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Preface

The Laplace transform, as its name implies, can be traced back to the work of
the Marquis Pierre-Simon de Laplace (1749-1827). Strange as it may seem no
reference is made to Laplace transforms in Rouse Ball’s “A Short Account of
the History of Mathematics”. Rouse Ball does refer to Laplace’s contribution
to Probability Theory and his use of the generating function. Nowadays it is
well-known that if φ(t) is the probability density in the distribution function of
the variate t, where 0 ≤ t < ∞, then the expected value of est is the Moment
Generating Function which is defined by

M(s) =
∫ ∞

0

estφ(t)dt. (1)

The term on the right hand side of (1) is, if we replace s by −s, the quantity
that we now call the Laplace transform of the function φ(t).
One of the earliest workers in the field of Laplace transforms was J.M. Petzval
(1807-1891) although he is best remembered for his work on optical lenses and
aberration which paved the way for the construction of modern cameras. Petzval
[167] wrote a two volume treatise on the Laplace transform and its application
to ordinary linear differential equations. Because of this substantial contribu-
tion the Laplace transform might well have been called the Petzval transform
had not one of his students fallen out with him and accused him of plagiarising
Laplace’s work. Although the allegations were untrue it influenced Boole and
Poincarè to call the transformation the Laplace transform.
The full potential of the Laplace transform was not realised until Oliver Heavi-
side (1850-1925) used his operational calculus to solve problems in electromag-
netic theory. Heaviside’s transform was a multiple of the Laplace transform and,
given a transform, he devised various rules for finding the original function but
without much concern for rigour. If we consider the simple differential equation

d2y

dt2
+ y = 1, t > 0

with initial conditions y(0) = y′(0) = 0 then Heaviside would write py for dy/dt,
p2y for d2y/dt2 and so on. Thus the given equation is equivalent to

(p2 + 1)y = 1,

and the ‘operational solution’ is

y ≡ 1
p2 + 1

.

Expanding the right hand side in powers of 1/p we obtain

y ≡ 1
p2
− 1

p4
+

1
p6
− · · · .



ix

Heaviside regarded 1/p as equivalent to
∫ t

0
1dt, i.e. t, 1/p2 as

∫ t

0
tdt = t2/2!,

etc., so that the solution of the given differential equation is

y =
t2

2!
− t4

4!
+

t6

6!
− · · · ,

which is readily identified with 1− cos t, the correct solution.
For a differential equation of the form (again using the notation py = dy/dt,
etc.)

(a0p
n + a1p

n−1 + · · ·+ an−1p + an)y = 1,

satisfying

dry

dtr

∣∣∣∣
t=0

= 0, r = 0, 1, · · · , n− 1

Heaviside has the operational solution

y =
1

φ(p)
,

where we denote the nth degree polynomial by φ(p). If all the roots pr, r =
1, · · · , n of the nth degree algebraic equation φ(p) = 0 are distinct Heaviside
gave the formula (known as the ‘Expansion Theorem’)

y =
1

φ(0)
+

n∑
r=0

eprt

prφ′(pr)
. (2)

Compare this to (1.23). Carslaw and Jaeger [31] give examples of Heaviside’s
approach to solving partial differential equations where his approach is very
haphazard. Curiously, in his obituaries, there is no reference to his pioneering
work in the Operational Calculus.
Bateman (1882-1944) seems to have been the first to apply the Laplace trans-
form to solve integral equations in the early part of the 20th century. Based
on notes left by Bateman, Erdélyi [78] compiled a table of integral transforms
which contains many Laplace transforms.
Bromwich (1875-1929), by resorting to the theory of functions of a complex
variable helped to justify Heaviside’s methods to some extent and lay a firm
foundation for operational methods. For the example given above he recognized
that the solution of the second order equation could be expressed as

y =
1

2πi

∫ γ+i∞

γ−i∞
ept dp

p(p2 + 1)
,

where γ > 0. For the more general nth order equation we have

y =
1

2πi

∫ γ+i∞

γ−i∞
ept dp

pφ(p)
, (3)
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where all the roots of φ(p) = 0 lie to the left of <p = γ. The integral can be
replaced by

y =
1

2πi

∫

C
ept dp

pφ(p)
, (4)

where C is any circular path with centre the origin which contains all the zeros
of φ(p) = 0 inside its circumference. Applying the Cauchy residue theorem to
this integral leads to the expansion theorem (2). Again no specific mention of
his contribution to the Operational Calculus was made in Bromwich’s obituary
(Hardy [111]). However, Jeffreys [118] gives an exposition of his methods in his
book.

Starting in the 1920’s considerable effort was put into research on transforms.
In particular, Carson [32] and van der Pol made significant contributions to
the study of Heaviside transforms. Thus Carson established, for the differential
equation considered above, that

1
φ(p)

= p

∫ ∞

0

e−pty(t)dt. (5)

Van der Pol gave a simpler proof of Carson’s formula and showed how it could
be extended to deal with non-zero initial conditions. Doetsch in his substantial
contributions to transform theory preferred to use the definition that is now
familiar as the Laplace transform

f̄(s) =
∫ ∞

0

e−stf(t)dt. (6)

Another researcher who made significant contributions to the theory of Laplace
transforms was Widder and in his book [253] he gives an exposition of the theory
of the Laplace-Stieltjes transform

f̄(s) =
∫ ∞

0

e−stdα(t), (7)

where the function α(t) is of bounded variation in the interval 0 ≤ t ≤ R and
the improper integral is defined by

∫ ∞

0

e−stdα(t) = lim
R→∞

∫ R

0

e−stdα(t).

This, of course, reduces to the standard definition of the Laplace transform
when dα(t) = f(t)dt and f(t) is a continuous function. An advantage of the
Laplace-Stieltjes approach is that it enables us to deal in a sensible manner
with functions of t which have discontinuities. In particular, we note that the
inversion theorem takes the form (2.14) at a point of discontinuity.
Many other mathematicians made contributions to the theory of Laplace trans-
forms and we shall just recall Tricomi [233] who used expansions in terms of
Laguerre polynomials in order to facilitate the inversion of Laplace transforms.
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The reader should consult Widder and the references therein for more details.
Also quite a number of reference works appeared with tables of functions and
their Laplace transforms, e.g. Roberts and Kaufman [197] — nearly all these
results having been found painstakingly by contour integration methods.

With the advent of computers an opportunity arose to find out if one could
develop methods which would produce accurate numerical answers for the in-
verse Laplace transform. A great deal has been achieved and this book gives
some insight into the State of the Art. When a function has an explicit Laplace
transform which has no poles to the right of <s = c(c > 0) and only a finite
number of poles to the left then, at this juncture in time, it is reasonable to ex-
pect that f(t) can be computed to a high degree of accuracy for moderate values
of t. When f̄(s) has an infinity of poles on the imaginary axis then matters are
not quite so straightforward and results can be very unreliable. Clearly this is
an area where further research would be worthwhile. Where f̄(s) is determined
by numerical values we again cannot expect to obtain accurate results. In many
cases we have to rely on ad hoc methods such as interpolation or least squares
to re-construct the function (see Applications §10.1 and §10.3) and, in general,
we cannot expect good results unless, as in §10.1, we can compute f̄(s) very
accurately. A blossoming area of current research is to find reliable techniques
for the inversion of multidimensional transforms and a brief account has been
given in the text.

This book is divided into a number of parts. The Preface gives a brief historical
introduction. Chapters 1 and 2 provide basic theory. Chapters 3 - 8 outline
methods that have been developed to find f(t) for given t and f̄(s). Chapter 9
presents the conclusions of various surveys which have been carried out on the
efficacies of these methods. In Chapter 10 we give some case studies of Applica-
tions. Chapter 11 gives background material needed to understand the methods
discussed in earlier chapters. Readers can access a selection of FORTRAN and
Mathematica programs of some of the most efficient numerical techniques from
the website www.cf.ac.uk/maths/cohen/programs/inverselaplacetransform/.
When using these programs the user should try at least two different methods
to confirm agreement of the numerical results as, occasionally, one method may
fail for no accountable reason or it may be that t is too large or there has been
severe cancellation of terms involved in the methods.

It is hoped that this book will be a useful tool for all those who use Laplace
transforms in their work whether they are engineers, financial planners, math-
ematicians, scientists or statisticians. The book can also be used to provide
a balanced course on Laplace transforms consisting of theory, numerical tech-
niques and Applications.
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Notation

i
√

(−1)
f (n)(t) nth derivative of f(t)
L{f(t)} Laplace transform of f(t)

f̄(s) L{f(t)}
f̃(t) numerical approximation tof(t)

L2{f(t1, t2)} Laplace transform of f(t1, t2)
LC Laplace-Carson transform

L−1{f̄(s)} inverse transform of f̄(s)
L−1

2 {f̄(s1, s2} inverse transform of f̄(s1, s2)
s parameter in the Laplace transformation
<s real part of s
=s imaginary part of s
γ smallest real part of s for which Laplace transform is convergent
c real number ≥ γ

Z{f(t)} z − transform of f(t)
B,B′, C integration path

F Fourier transform
FC Fourier cosine transform
FS Fourier sine transform

H(t) Heaviside unit step function
δ(t) unit impulse function

erf(x) the error function
E1(x) the exponential integral
Γ(x) the gamma function
n! factorial function

(n)i Pochhammer symbol
ψ(n) Psi or Digamma function
C Euler’s constant

Tn(x) Chebyshev polynomial of first kind
Tn ∗ (x) shifted Chebyshev polynomial of first kind
Un(x) Chebyshev polynomial of second kind
Pn(x) Legendre polynomial
Ln(x) Laguerre polynomial
Φn(x) orthogonal Laguerre function



xiv

L(n)(x) n-point Lagrange interpolation polynomial
Jn(t) nth order Bessel function
In(t) nth order modified Bessel function
Ci(t) cosine integral
Si(t) sine integral

C(t), S(t) Fresnel integrals
M(a, b, z) Kummer confluent hypergeometric function

∆ forward difference operator
[x] integer part of x
ẑ complex conjugate of z

f [x0, x1, · · · , xr] rth divided difference
[p/q] notation for Padé approximant

sgn(x) sign of x
|| · · · || an appropriate norm
〈·, ·〉 vector inner product
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Chapter 1

Basic Results

1.1 Introduction

The principal object of this work is to bring together in one volume details of the
various methods which have been devised for the numerical inversion of Laplace
Transforms and to try and give some indication of how effective these methods
are. In order to understand these methods we need to be familiar with basic
results about Laplace transforms and these are presented in this and the next
chapter.

Definition 1.1 The Laplace transform of the function f(t) is defined by

L{f(t)} =
∫ ∞

0

e−stf(t)dt. (1.1)

In general, we shall denote the transform by f̄(s). We assume that in (1.1)
the function f(t) is defined for all positive t in the range (0,∞), s is real and,
most importantly, that the integral is convergent. A necessary condition for
convergence is that

<s > γ, where γ is a constant,

and f(t) satisfies
|f(t)| = O(eγt) as t →∞. (1.2)

This condition implies that the function f(t) is smaller in magnitude than the
term e−st for large t (> t0, say) and, unless f(t) has some singularity for t < t0,
the integral in (1.1) is convergent. Additionally, we can infer that

f̄(s) → 0, as s →∞.

A most important consequence of the above is that f̄(s) will be an analytic
function in the half-plane <s > γ, a result which will have application in sub-
sequent chapters.



2 CHAPTER 1. BASIC RESULTS

Because of the restrictions imposed by (1.2) it is clear that a function such as
exp(t2) cannot have a Laplace transform since no value of the constant γ can
be found for which

|et2 | < eγt,

for large t. The restriction that f(t) should be continuous can be relaxed and
later we shall determine the Laplace transforms of functions which are periodic,
with period T , and which have an infinite number of discontinuities.

1.2 Transforms of Elementary Functions

Integration yields

L{1} =
∫ ∞

0

e−stdt = 1/s , (s > 0).

L{t} =
∫ ∞

0

e−sttdt =
(−te−st

s

)∣∣∣∣
∞

0

+
∫ ∞

0

(e−st/s)dt,

= (1/s)
∫ ∞

0

e−stdt = 1/s2 ,

If we let

In =
∫ ∞

0

e−sttndt, (n an integer)

then, by integration by parts, we find

In = (n/s)In−1.

Repeated application of this result yields

L{tn} = In = (n/s)In−1 = · · · = (n!/sn)I0 = n!/sn+1.

Also

L{eαt} =
∫ ∞

0

e−steαtdt =
∫ ∞

0

e−(s−α)tdt = 1/(s− α).

The integral converges provided that <s > α. Again

L{sin ωt} =
∫ ∞

0

e−st sin ωtdt = I, say.

Integration by parts produces

I = − 1
ω

cos ωte−st

∣∣∣∣
∞

0

− s

ω

∫ ∞

0

e−st cos ωtdt,

=
1
ω
− s

ω

{
1
ω

e−st sin ωt

∣∣∣∣
∞

0

+
s

ω

∫ ∞

0

e−st sin ωtdt

}
.
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Thus

I =
1
ω
− s2

ω2
I,

which, after rearrangement, gives

L{sin ωt} = I = ω/(s2 + ω2).

Similarly,
L{cosωt} = s/(s2 + ω2).

A list of the more useful transforms is given in Appendix 11.1.

1.2.1 Elementary Properties of Transforms

It follows from (1.1) that if f(t) and g(t) are any two functions satisfying the
conditions of the definition then

L{f(t) + g(t)} =
∫ ∞

0

e−st(f(t) + g(t))dt,

=
∫ ∞

0

e−stf(t)dt +
∫ ∞

0

e−stg(t)dt,

i.e.

L{f(t) + g(t)} = f̄(s) + ḡ(s). (1.3)

Also

L{κf(t)} =
∫ ∞

0

e−st(κf(t))dt, κ a constant

= κ

∫ ∞

0

e−stf(t)dt,

i.e.

L{κf(t)} = κf̄(s). (1.4)

From (1.3) and (1.4) and the results of the previous section we can determine the
Laplace transforms of any linear combination of the functions 1, tn, eαt, sin ωt
and cos ωt. For example,

L{3 + t2 + 2e−t + sin 2t} = L{3}+ L{t2}+ L{2e−t}+ L{sin 2t},
=

3
s

+
2
s3

+
2

s + 1
+

2
s2 + 4

.

In some instances L{f(t)} will be known and it will be required to determine
L{f(at)}. We find, by making a change of variable in the defining relationship
(1.1), that

L{f(at)} =
1
a
f̄

( s

a

)
. (1.5)
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If we define the function h(t) by

h(t) = f(t) + ig(t), i =
√−1,

then
L{h(t)} = L{f(t)}+ iL{g(t)} = f̄(s) + iḡ(s). (1.6)

In particular, when f(t), g(t) and s are real

<L{h(t)} = f̄(s)
=L{h(t)} = ḡ(s)

}
. (1.7)

Further, if f(t) is a function with known transform f̄(s), it follows from (1.1)
that

L{e−αtf(t)} =
∫ ∞

0

e−st(e−αtf(t))dt,

=
∫ ∞

0

e−(s+α)tf(t)dt,

and, by comparing the right hand side with (1.1), it is clear this represents a
‘transform’ having parameter s + α . Thus we have the result

L{e−αtf(t)} = f̄(s + α). (1.8)

(1.8) is referred to as the Shift theorem for Laplace transforms although Doetsch
[70] refers to it as the damping theorem . It follows from the Shift theorem that

L{te−αt} = 1/(s + α)2,

L{e−αt sin ωt} =
ω

(s + α)2 + ω2
,

L{e−αt cosωt} =
s + α

(s + α)2 + ω2
.

Since e−iωt = cos ωt− i sin ωt it follows from the Shift theorem and (1.6) that

L{f(t) cos ωt} = <f̄(s + iω), (1.9)
L{f(t) sin ωt} = −=f̄(s + iω). (1.10)

Another useful result is

L{tf(t)} = − d

ds
(f̄(s)). (1.11)

This result is valid whenever it is permissible to differentiate (1.1) under the
sign of integration. We find by taking f(t) = cos ωt that (1.11) yields

L{t cosωt} =
s2 − ω2

(s2 + ω2)2
,



1.3. TRANSFORMS OF DERIVATIVES AND INTEGRALS 5

a result which could also have been obtained by taking f(t) = t in (1.9).
Finally, in this section, we establish the result

L{f(t)/t} =
∫ ∞

s

f̄(v)dv. (1.12)

The right hand side may be written as
∫ ∞

s

f̄(v)dv =
∫ ∞

s

(∫ ∞

0

e−vtf(t)dt

)
dv.

Assuming uniform convergence of the integrals the order of integration may be
inverted and we have

∫ ∞

s

f̄(v)dv =
∫ ∞

0

f(t)
(∫ ∞

s

e−vtdv

)
dt,

=
∫ ∞

0

f(t)
e−st

t
dt =

∫ ∞

0

e−st

(
f(t)

t

)
dt,

= L{f(t)/t}.

It follows from (1.12) that

L
{

sin t

t

}
=

∫ ∞

s

dv

v2 + 1
= tan−1 v

∣∣∣
∞

s
,

= π
2 − tan−1 s. (1.13)

Note that it follows from (1.13), by taking s = 0 and s = 1 respectively, that
∫ ∞

0

sin t

t
dt =

π

2
,

and

∫ ∞

0

e−t sin t

t
dt =

π

4
.

1.3 Transforms of Derivatives and Integrals

In some of the most important applications of Laplace transforms we need to
find the transform of f ′(t), the derivative of f(t), higher derivatives of f(t), and
also

∫ t

0
f(u)du. Assume that f(t) is differentiable and continuous and O(eγt)

as t → ∞ . Further, f ′(t) is continuous except at a finite number of points
t1, t2, · · · , tn in any finite interval [0, T ]. Then

∫ T

0

e−stf ′(t)dt =
∫ t1

0

e−stf ′(t)dt +
∫ t2

t1

e−stf ′(t)dt + · · ·+
∫ T

tn

e−stf ′(t)dt.
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Integrating by parts a typical term on the right hand side is
∫ tr+1

tr

e−stf ′(t)dt = e−stf(t)
∣∣∣
tr+1

tr

+ s

∫ tr+1

tr

e−stf(t)dt,

= e−str+1f(tr+1−)− e−strf(tr+) + s

∫ tr+1

tr

e−stf(t)dt,

where

f(a−) = lim
ε→0

f(a− ε),

f(a+) = lim
ε→0

f(a + ε),

and ε > 0. Since f(t) is continuous at each ti we find

∫ T

0

e−stf ′(t)dt = e−sT f(T )− f(0+) + s

∫ T

0

e−stf(t)dt.

Letting T →∞ we obtain the result

L{f ′(t)} = sf̄(s)− f(0+). (1.14)

If we assume that f ′(t) is continuous and differentiable and f ′′(t) is continuous
except at a finite number of points in any finite interval (0, T ) then

L{f ′′(t)} = L
{

d

dt
f ′(t)

}
= sL{f ′(t)} − f ′(0+),

giving
L{f ′′(t)} = s2f̄(s)− sf(0+)− f ′(0+). (1.15)

This result can be extended to higher derivatives to yield

L{f (n)(t)} = snf̄(s)− sn−1f(0+)− sn−2f ′(0+)− · · · − f (n−1)(0+). (1.16)

In most of the applications that we are interested in the function and its deriva-
tives are continuous at t = 0 so that f (n)(0+) can be replaced by f (n)(0).
Another useful result is

L
{∫ t

0

f(u)du

}
= f̄(s)/s. (1.17)

From the definition we have

L
{∫ t

0

f(u)du

}
=

∫ ∞

0

e−st

(∫ t

0

f(u)du

)
dt,

= −e−st

s

(∫ t

0

f(u)du

)∣∣∣∣
∞

0

+
∫ ∞

0

e−st

s
f(t)dt,
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by integrating by parts. Because we require the Laplace transform to be con-
vergent it follows that

∫ t

0
f(u)du must be majorised by e−st as t → ∞. At the

lower limit the integrand is zero. Thus

L
{∫ t

0

f(u)du

}
=

1
s

∫ ∞

0

e−stf(t)dt = f̄(s)/s,

as required. Finally, in this section, we shall demonstrate how we can find the
formal solution of a linear ordinary differential equation with constant coeffi-
cients.

Example 1.1 Solve the linear second order differential equation system

d2y

dt2
+ ω2y = 1, y(0) = a, y′(0) = b, (1.18)

where ω(> 0), a and b are constants.
We can proceed in the following way. If ȳ(s) is the Laplace transform of y(t) it
follows from (1.15) that

L
{

d2y

dt2

}
= s2ȳ(s)− sa− b,

and since L{1} = 1/s it follows that the Laplace transform of the differential
equation is

s2ȳ(s)− sa− b + ω2ȳ(s) = 1/s.

Collecting terms in ȳ(s) this gives

(s2 + ω2)ȳ(s) = sa + b + 1/s,

i.e.
ȳ(s) =

sa + b

s2 + ω2
+

1
s(s2 + ω2)

,

and, by resolving into partial fractions, we obtain

ȳ(s) =
(

a− 1
ω2

)
s

s2 + ω2
+

b

ω

ω

s2 + ω2
+

1
ω2

1
s
.

By reference to the Table of Transforms in Appendix 11.1 we can infer that the
right hand side is the Laplace transform of

(
a− 1

ω2

)
cos ωt +

b

ω
sin ωt +

1
ω2

,

and we therefore assert that

y(t) =
(

a− 1
ω2

)
cos ωt +

b

ω
sin ωt +

1
ω2

, (1.19)

is a solution of the differential equation system (1.18). Substitution of y(t) in
the differential equation and evaluation of y(0) and y′(0) confirms this.
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1.4 Inverse Transforms

If L{f(t)} = f̄(s) then we write L−1{f̄(s)} to denote the function whose Laplace
transform is f̄(s). Thus

f(t) = L−1{f̄(s)}, (1.20)

and we say that f(t) is the inverse transform of f̄(s). From the previous sections
it is evident that

L−1

{
1
s2

}
= t, L−1

{
s

s2 + ω2

}
= cos ωt.

It is not difficult to establish that if a function f1(t) differs from f(t) only at a
finite set of values t1, t2, · · · , tn then

L{f1(t)} = L{f(t)},

so that the inverse transform is not unique. As we shall see in the next chapter
the Laplace transform is unique if f(t) is continuous in the interval [0,∞). This
condition will be tacitly assumed throughout the book unless otherwise stated.
In the last section we found that we could solve a differential equation if it was
possible to express a rational function of s in terms of functions whose inverse
transforms were known. More generally, if

f̄(s) = P (s)/Q(s), deg P < deg Q, (1.21)

and

Q(s) = (s− α1)(s− α2) · · · (s− αn), (1.22)

where the αk are all distinct, then f̄(s) can be written as

f̄(s) =
n∑

k=1

P (αk)
(s− αk)Q′(αk)

,

so that

L−1{f̄(s)} =
n∑

k=1

P (αk)
Q′(αk)

eαkt. (1.23)

This result is known as the expansion theorem . If one of the roots αk is repeated
m times then the expansion for f̄(s) contains terms of the form

A1

s− αk
+

A2

(s− αk)2
+ · · ·+ Am

(s− αk)m
,

where

Am−r = lim
s→αk

[
1
r!

dr

dsr

(
(s− αk)mf̄(s)

)]
.
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Example 1.2 Find L−1{1/s(s− 1)3}.
From the above it is clear that f̄(s) must have the form

f̄(s) =
A

s
+

B

s− 1
+

C

(s− 1)2
+

D

(s− 1)3
.

where

A = lim
s→0

1/(s− 1)3 = −1,

B = lim
s→1

1
2!

d2

ds2

1
s

= 1,

C = lim
s→1

d

ds

1
s

= −1,

D = lim
s→1

1
s

= 1.

Thus
f̄(s) =

−1
s

+
1

s− 1
+

−1
(s− 1)2

+
1

(s− 1)3
,

and
f(t) = L−1{f(s)} = −1 + et − tet + 1

2 t2et.

The same result could have been achieved by the equivalent method of partial
fractions. In the next chapter we will show how the inverse transform of more
general functions can be determined.

1.5 Convolution

Consider the following example which differs from Example 1.1 only in con-
sequence of the right hand side of the differential equation not being given
explicitly.

Example 1.3 Solve the linear second order ordinary differential equation sys-
tem

d2y

dt2
+ ω2y = f(t), y(0) = a, y′(0) = b, (1.24)

where f(t) is a function of t to be specified and ω, a, b are constants.
Proceeding as in Example 1.1 we find that if ȳ = ȳ(s) = L{y(t)} and f̄ = f̄(s) =
L{f(t)} then the Laplace transform of the differential equation is

s2ȳ − sa− b + ω2ȳ = f̄ .

Thus

ȳ = a · s

s2 + ω2
+

(
b

ω

)
ω

s2 + ω2
+

(
1
ω

)
· f̄ · ω

s2 + ω2
.

Now the first term on the right hand side is clearly the transform of a cosωt
and the second term is the transform of (b/ω) sin ωt but, without more precise



10 CHAPTER 1. BASIC RESULTS

information about f̄ , we cannot deduce anything about the last term using our
current knowledge of Laplace transforms. The following theorem enables us to
give an explicit formula for the inverse transform of the final term. We have

Theorem 1.1 The Convolution Theorem. If f̄1(s) is the Laplace transform
of f1(t) and f̄2(s) is the Laplace transform of f2(t) then

L−1{f̄1(s)f̄2(s)} =
∫ t

0

f1(u)f2(t− u)du, (1.25)

— this theorem is sometimes referred to as the Composition theorem or the
Faltung theorem or Duhamel’s theorem. The integral on the right hand side of
(1.25) is known as the convolution of f(t) and g(t) and is written as (f ∗ g)(t).
Proof. Assume that the integrals defining f̄1(s) and f̄2(s) converge absolutely
on s = s0 > 0. Then we know that

∫ ∞

0

e−s0uf1(u)du

∫ ∞

0

e−s0vf2(v)dv =
∫ ∫

e−s0(u+v)f1(u)f2(v)dudv,

where the double integral is taken over the quadrant u > 0, v > 0. The
substitution u = u, u + v = t transforms the double integral into

∫ ∫
e−s0tf1(u)f2(t− u)dudt,

taken over the region between the u-axis and the line u = t in the u, t plane.
This double integral is equal to the repeated integral

∫ ∞

0

e−s0t

{∫ t

0

f1(u)f2(t− u)du

}
dt.

Since the absolute convergence for s = s0 > 0 implies absolute convergence for
s > s0 we have established the theorem. ¥

Applying the above theorem to the transform in the above example we find that
the third term is the transform of

1
ω

∫ t

0

f(u) sin ω(t− u)du,

and hence the complete solution of the differential equation system (1.24) is
given for general f(t) by

y(t) = a cos ωt + (b/ω) sin ωt + (1/ω)
∫ t

0

f(u) sin ω(t− u)du. (1.26)

When f(t) is specified then y(t) can be determined explicitly by evaluating the
integral in (1.26).
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We remark that the Convolution theorem can be applied to solve Volterra in-
tegral equations of the first and second kind where the kernel is of convolution
type.

Example 1.4 Solve the equation
∫ t

0

cos(t− x)φ(x)dx = sin t.

Taking Laplace transforms of both sides we have

s

s2 + 1
φ̄(s) =

1
s2 + 1

,

which implies that

φ̄(s) =
1
s
,

i.e.

φ(t) = 1.

With the general Volterra equation of the first kind
∫ t

0

K(t− x)φ(x)dx = g(t),

then
φ̄(s) = ḡ(s)[K̄(s)]−1.

Now [K̄(s)]−1 cannot be a Laplace transform since it does not tend to zero as
s →∞. Hence, for φ(t) to exist as an ordinary function g(t) must be a function
which satisfies

ḡ(s)[K̄(s)]−1 → 0 as |s| → ∞.

1.6 The Laplace Transforms of some Special
Functions

The Heaviside Unit Step Function

The discontinuous function H(t) defined by

H(t) =
{

0 when t < 0
1 when t > 0 , (1.27)

is called the (Heaviside) unit step function. We have

L{H(t)} =
∫ ∞

0

e−stH(t)dt =
∫ ∞

0

e−stdt =
1
s
.
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Similarly,

H(t− a) =
{

0 when t < a
1 when t > a

.

It therefore represents a unit step function applied at t = a. Its Laplace trans-
form is given by

L{H(t− a)} =
∫ ∞

0

e−stH(t− a)dt =
∫ ∞

a

e−stH(t)dt,

=
[
−e−st

s

]∞

a

=
e−as

s
. (1.28)

Note that a is always positive since t = 0 represents the start of observations.
A particularly useful result involving the unit step function is

L{H(t− a)f(t− a)} = e−asf̄(s). (1.29)

This is referred to by Doetsch as the translation theorem and by Bellman and
Roth as the exponential shift theorem .
The function

κ[H(t− a)−H(t− b)],

where a < b, is equal to 0 when t < a, κ when a < t < b and 0 when t > b. It is
called a pulse of duration b− a, magnitude κ and strength κ(b− a). Its Laplace
transform is

κ(e−as − e−bs)/s.

The Unit Impulse Function

A pulse of large magnitude, short duration and finite strength is called an
impulse. The unit impulse function, denoted by δ(t), and sometimes called the
delta function , is an impulse of unit strength at t = 0. It is the limit of a pulse
of duration α and magnitude 1/α as α → 0. Thus

δ(t) = lim
α→0

{
H(t)−H(t− α)

α

}
. (1.30)

It follows that

L{δ(t)} = lim
α→0

(
1− e−αs

αs

)
,

and, applying l’Hôpital’s rule,

the right hand side = lim
α→0

se−αs

s
= 1.

Thus
L{δ(t)} = 1. (1.31)
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The function δ(t− a) represents an unit impulse function applied at t = a. Its
Laplace transform is given by

L{δ(t− a)} = e−as.

The impulse function is useful when we are trying to model physical situations,
such as the case of two billiard balls impinging, where we have a large force
acting for a short time which produces a finite change of momentum.

Periodic functions

Sometimes, particularly in problems involving electrical circuits, we have to
find the Laplace transform of a function f(t) with the property that

f(t + T ) = f(t), t > 0. (1.32)

where T is a constant. Such a function is called periodic and the most frequently
occurring examples of periodic functions are cos t and sin t. The Laplace trans-
form of f(t) is given by

f̄(s) =
∫ ∞

0

e−stf(t)dt,

=
∫ T

0

e−stf(t)dt +
∫ 2T

T

e−stf(t)dt + · · ·+
∫ (k+1)T

kT

e−stf(t)dt + · · · .

But ∫ (k+1)T

kT

e−stf(t)dt = e−ksT

∫ T

0

e−stf(t)dt,

which implies that

f̄(s) = (1 + e−sT + e−2sT + · · ·+ e−ksT + · · · )
∫ T

0

e−stf(t)dt.

The geometric series has common ratio e−sT < 1 for all real s > γ and therefore
it converges to 1/(1− e−sT ) giving

L{f(t)} =

∫ T

0
e−stf(t)dt

1− e−sT
. (1.33)

Example 1.5 Find the Laplace transform of the Square Wave function

f(t) =
{

1, 0 < t < 1
2T

−1, 1
2T < t < T

. (1.34)
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Applying the result (1.33) we have

f̄(s) =




∫ 1
2T

0

e−stdt−
∫ T

1
2T

e−stdt


 /(1− e−sT ),

=


1− 2e−

1
2 sT + e−sT

s


 /(1− e−sT ),

=
1− e−

1
2 sT

s(1 + e−
1
2 sT )

,

=
1
s

tanh
1
4
sT.

A comprehensive list of transforms can be found in Roberts and Kaufman
[197] and Erdélyi [78], for example. A selected list of transforms is given in
Appendix 11.1.

1.7 Difference Equations and Delay Differential
Equations

We have seen that linear ordinary differential equations and convolution type
Volterra integral equations can be solved by means of Laplace transforms. An-
other type of problem which is amenable to solution by Laplace transforms is
that of difference equations. Suppose we are given a0. Define y(t) = an for
n ≤ t < n + 1 where n = 0, 1, 2, · · · . Then, if ȳ(s) = L{y(t)}, we have

L{y(t + 1)} =
∫ ∞

0

e−sty(t + 1)dt,

=
∫ ∞

1

e−s(u−1)y(u)du,

= es

[∫ ∞

0

e−suy(u)du−
∫ 1

0

e−suy(u)du

]
,

= es

[
y(s)−

∫ 1

0

e−sua0du

]
,

= esȳ(s)− a0e
s(1− e−s)

s
. (1.35)

Similarly we can establish that

L{y(t + 2)} = e2sȳ(s)− es(1− e−s)(a0e
s + a1)

s
. (1.36)

We will now employ the above results to determine the solution of a difference
equation.
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Example 1.6 Solve the difference equation an+2 − 5an+1 + 6an = 0, a0 = 0,
a1 = 1.
Write, as before, y(t) = an, n ≤ t < n + 1. Then

y(t + 2)− 5y(t + 1) + 6y(t) = 0.

Taking Laplace transforms

e2sȳ(s)− es(1− e−s)
s

− 5esȳ(s) + 6ȳ(s) = 0.

Collecting together the terms in ȳ(s) and rearranging produces

ȳ(s) =
es(1− e−s)

s

[
1

(es − 3)(es − 2)

]
,

=
es(1− e−s)
s(es − 3)

− es(1− e−s)
s(es − 2)

.

From Appendix 12.1, L{f(t)} = (1−e−s)/s(1−re−s) if f(t) = rn, n ≤ t < n+1
and thus

y(t) = 3[t] − 2[t] ⇒ an = 3n − 2n,

where [t] denotes the integer part of t.

We can also use the method of Laplace transforms to solve differential difference
equations.

Example 1.7 Solve y′(t) + y(t− 1) = t2 if y(t) = 0 for t ≤ 0.
Taking the Laplace transform of both sides

L{y′(t)}+ L{y(t− 1)} = 2/s3.

Now

L{y′(t)} = sȳ − y(0) = sȳ,

and

L{y(t− 1)} =
∫ ∞

0

e−sty(t− 1)dt,

=
∫ ∞

−1

e−s(u+1)y(u)du,

= e−s

[∫ 0

−1

e−suy(u)du +
∫ ∞

0

e−suy(u)du

]
,

= e−sȳ(s).

Thus

sȳ + e−sȳ = 2/s3,
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giving

ȳ = 2/s3(s + e−s).

We have

ȳ =
2

s4(1 + e−s/s)
,

=
2
s4

(
1− e−s

s
+

e−2s

s2
− · · ·

)
,

=
2
s4
− 2e−s

s5
+

2e−2s

s6
− · · · ,

= 2
∞∑

n=0

(−1)n e−ns

sn+4
.

Since

L−1

{
e−ns

sn+4

}
=

(t− n)n+3

(n + 3)!
H(t− n),

we find

y(t) = 2
[t]∑

n=0

(−1)n (t− n)n+3

(n + 3)!
,

where [t] = greatest integer ≤ t.

1.7.1 z-Transforms

An alternative way of solving difference equations is via z-transforms. z-transforms
have applications in digital filtering and signal processing and other practical
problems (see Vich [244] and Brezinski [26]).
In signal processing we have the transformation of an input signal f(t) into an
output signal h(t) by means of a system G called a digital filter. If f is known
for all values of t we have a continuous signal but it may only be known at
equally spaced values of t, tn = nT, n = 0, 1. · · · where T is the period, in
which case we have a discrete signal.
The z-transform of a discrete signal is given by

Z{f(t)} = F (z) =
∞∑
0

fnz−n, fn = f(nT ).

Corresponding to the input sequence fn we have an output sequence hn where
hn = h(nT ). The corresponding transfer function is

Z{h(t)} = H(z) =
∞∑
0

hnz−n.
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The system G can be represented by its so-called transfer function G(z) which
satisfies

H(z) = G(z)F (z).
If

G(z) =
∞∑
0

gnz−n

then

hn =
∞∑

k=0

fkgn−k, n = 0, 1, · · · . (1.37)

Given {fn} and {hn} then (1.37) enables {gn} to be computed.
An alternative way of looking at the input signal is to consider the function f(t)
as being composed of a sum of impulse functions applied at nT, n = 0, 1, · · · ,
i.e.,

f(t) = f0δ(t) + f1δ(t− T ) + · · ·+ fnδ(t− nT ) + · · · .

The Laplace transform of f(t) is

f̄(s) = f0 + f1e
−Ts + · · ·+ fne−nTs + · · ·

and, if we write z = eTs, we obtain

f̄(s) = f0 + f1z
−1 + · · ·+ fnz−n + · · · = F (z),

which establishes the connection between z-transforms and Laplace transforms.
To close this section we give an example of how z-transforms can be used to
solve a difference equation.

Example 1.8 Find the solution of the difference equation

an+2 − 5an+1 + 6an = 3n, n ≥ 2; a0 = 0, a1 = 1.

If we multiply the difference equation by z−n and sum over n we get

z2
∞∑

n=0

an+2

zn+2
− 5z

∞∑
n=0

an+1

zn+1
+ 6

∞∑
n=0

an

zn
=

∞∑
n=0

3n

zn
.

Denoting
∑∞

n=0 an/zn by A(z) this can be expressed as

z2A(z)− a0z
2 − a1z − 5[zA(z)− a0z] + 6A(z) =

3z

(z − 1)2
,

from Appendix §11.1. Substituting the values of a0 and a1 and rearranging we
find

A(z) =
3z

(z − 2)(z − 3)(z − 1)2
+

z

(z − 2)(z − 3)
,

which, after resolution into partial fractions, yields

A(z) =
7
4z

z − 3
− 4z

z − 2
+

9
4z

z − 1
+

3
2z

(z − 1)2
.

By reference to the table of z-transforms in §11.1 we find

an = 7
43n − 4 · 2n + 9

4 + 3
2n.

1.7. DIFFERENCE AND DELAY DIFFERENTIAL EQUATIONS
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1.8 Multidimensional Laplace Transforms

We have restricted our exposition of Laplace transforms to functions of one
variable but we could equally well extend our definition to a function of two or
more variables. Thus if, for example, y is a function of the variables t1, t2, i.e.
y = f(t1, t2) then we define

L2{y} = f̄(s1, s2) =
∫ ∞

0

∫ ∞

0

e−s1t1−s2t2f(t1, t2)dt1dt2, (1.38)

where, for convergence of the integrals, we have to impose restrictions on f and
s1, s2 which are similar to those in §1.1, — see Ditkin and Prudnikov [67] for a
fuller account of the criteria needed for convergence. We can, as earlier, deduce
the Laplace transform for elementary functions of two variables. Useful general
results are:-

1. If f(t1, t2) = f1(t1)f2(t2) and L{f1(t1)} = f̄1(s1) and L{f2(t2)} = f̄2(s2)
then

L2{f(t1, t2)} = f̄1(s1)f̄2(s2). (1.39)

2. If the integral (1.38) converges boundedly at the point (s′1, s
′
2) then it

converges boundedly at all points (s1, s2) for which

<(s1 − s′1) > 0, <(s2 − s′2) > 0.

3. If the function f̄(s1, s2) is analytic in the region D which consists of the set
of all points (s1, s2) for which the integral (1.38) is boundedly convergent
then

∂m+n

∂s1
m∂s2

n
f̄(s1, s2) = (−1)m+n

∫ ∞

0

∫ ∞

0

e−s1t1−s2t2tm1 tn2f(t1, t2)dt1dt2,

(1.40)
or, equivalently,

L2{tm1 tn2f(t1, t2)} = (−1)m+n ∂m+n

∂s1
m∂s2

n
f̄(s1, s2). (1.40′)

Example 1.9 If f(t1, t2) = eαt1+βt2 (α, β real numbers), then
∫ ∞

0

∫ ∞

0

e−s1t1−s2t2eαt1+βt2dt1dt2 =
∫ ∞

0

e−s1t1eαt1dt1 ×
∫ ∞

0

e−s2t2eβt2dt2,

=
1

(s1 − α)(s2 − β)
.

The region of convergence is <s1 > α, <s2 > β.

Example 1.10 If

f(t1, t2) =
{

et1 for t1 ≤ t2,
et2 for t1 > t2,
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then
∫ ∞

0

∫ ∞

0

e−s1t1−s2t2f(t1, t2)dt1dt2

=
∫ ∞

0

e−s2t2 dt2

{∫ t2

0

e−s1t1et1dt1 +
∫ ∞

t2

e−s1t1et2dt1

}
,

=
∫ ∞

0

e−s2t2 dt2

{∫ t2

0

e−t1(s1−1)dt1 + et2

∫ ∞

t2

e−s1t1dt1

}
,

=
∫ ∞

0

e−s2t2 dt2

{
−e−t1(s1−1)

(s1 − 1)

∣∣∣∣
t2

0

+ et2

(−e−s1t1

s1

)∣∣∣∣
∞

t2

}
,

=
∫ ∞

0

e−s2t2

[(−e−t2(s1−1)

(s1 − 1)
+

1
(s1 − 1)

)
+ et2

(
e−s1t2

s1

)]
dt2,

=
−1

(s1 + s2 − 1)(s1 − 1)
+

1
s2(s1 − 1)

+
1

s1(s1 + s2 − 1)
,

which simplifies to yield

L2{f(t1, t2)} =
s1 + s2

s1s2(s1 + s2 − 1)
.

The region of convergence is shown in fig.1.1

We can establish many more results but just give a few samples below:-

L2{1} =
1

s1s2
,

L2{tj1tk2} =
j!k!

sj+1
1 sk+1

2

,

L2{e−αt1−βt2y} = f(s1 + α, s2 + β),

L2{sin t1} =
1

s2(s2
1 + 1)

,

L2{cos t1 cos t2} =
s1s2

(s2
1 + 1)(s2

2 + 1)
,

L2{sin(t1 + t2)} =
s1 + s2

(s2
1 + 1)(s2

2 + 1)
, etc.

The convolution concept can be extended to functions of two variables and
Ditkin and Prudnikov give the result:-

Theorem 1.2 The convolution theorem for functions of two variables.
If, at the point (s1, s2) the integral

f̄(s1, s2) =
∫ ∞

0

∫ ∞

0

e−s1t1−s2t2f(t1, t2)dt1dt2,
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is boundedly convergent, and the integral

ḡ(s1, s2) =
∫ ∞

0

∫ ∞

0

e−s1t1−s2t2g(t1, t2)dt1dt2,

is absolutely convergent, then

h̄(s1, s2) =f̄(s1, s2)ḡ(s1, s2), (1.41)

is the Laplace transform of the function

h(t1, t2) =
∫ t1

0

∫ t2

0

f(t1 − ξ1, t2 − ξ2)g(ξ1, ξ2)dξ1dξ2, (1.42)

and the integral

h̄(s1, s2) =
∫ ∞

0

∫ ∞

0

e−s1t1−s2t2h(t1, t2)dt1dt2,

is boundedly convergent at the point (s1, s2). ¥

Ditkin and Prudnikov find that there are some advantages in using the
Laplace-Carson transform defined by

LC{f(t1, t2)} = f̄C(s1, s2) = s1s2

∫ ∞

0

∫ ∞

0

e−s1t1−s2t2f(t1, t2)dt1dt2. (1.43)

This is essentially the two-dimensional analogue of the Heaviside transform and
effectively s1s2 times the Laplace transform L2. With the above definition we
have by integration by parts

s1f̄C(s1, s2) =s1s2

∫ ∞

0

e−s2t2
{−e−s1t1 f(t1, t2)|∞t1=0

}
dt2

+ s1s2

∫ ∞

0

∫ ∞

0

e−s1t1−s2t2
∂f(t1, t2)

∂t1
dt1dt2,

=s1s2

∫ ∞

0

e−s2t2f(0, t2)dt2

+ s1s2

∫ ∞

0

∫ ∞

0

e−s1t1−s2t2
∂f(t1, t2)

∂t1
dt1dt2,

=s1Lf(0, t2) + LC
{

∂f

∂t1

}
.

Thus

LC
{

∂f

∂t1

}
= s1[f̄C(s1, s2)− L{f(0, t2)}]. (1.44)

Likewise we can establish

LC
{

∂f

∂t2

}
= s2[f̄C(s1, s2)− L{f(t1, 0)}]. (1.45)
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Other results which are easily deduced are:-

LC{f(at1, bt2)} = f̄C(s1/a, s2/b), a, b > 0 (1.46)

LC{e−at1−bt2f(t1, t2)} =
s1s2

(s1 + a)(s2 + b)
f̄C(s1 + a, s2 + b), a, b arbitrary,

(1.47)

LC{g(t1, t2)} = e−as1−bs2 ḡC(s1, s2), (1.48)

where

g(t1, t2) =
{

0 t1 < a or t2 < b
f(t1 − a, t2 − b) t1 > a, t2 > b

More extensive results are given in Ditkin et al and we just quote here the result,
where Ln(x) denotes the Laguerre polynomial of degree n in the single variable
x,

LC{e−t1−t2Ln(t1)Ln(t2)} =
(

s1s2

(1 + s1)(1 + s2)

)n+1

. (1.49)

This, and similar results will be used in the 2-dimensional analogue of the Weeks’
method (see Chapter 3).

Naturally, we can extend the definition to cover m variables so that if

y = f(t1, t2, · · · , tm),

we have

Lm{y} = ȳ(s1, · · · , sm)

=
∫ ∞

0

· · ·
∫ ∞

0︸ ︷︷ ︸
m

e−s1t1−···−smtmf(t1, · · · , tm)dt1 · · · dtm. (1.50)

More information on two dimensional Laplace transforms can be found in the
works of van der Pol and Bremmer [240] or Voelker and Doetsch [245] and the
Bibliography should be consulted, particularly in regard to numerical inversion.



Chapter 2

Inversion Formulae and
Practical Results

2.1 The Uniqueness Property

We mentioned in the last Chapter that the Laplace transform is unique in
the sense that if f̄(s) = ḡ(s) and f(t) and g(t) are continuous functions then
f(t) = g(t). This result was proved originally by Lerch [125] and the proof given
here follows that in Carslaw and Jaeger [31].

Theorem 2.1 (Lerch’s theorem).
If

f̄(s) =
∫ ∞

0

e−stf(t)dt, s > γ, (2.1)

is satisfied by a continuous function f(t), there is no other continuous function
which satisfies the equation (2.1).
Proof. We require the following lemma.

Lemma 2.1 Let ψ(x) be a continuous function in [0, 1] and let
∫ 1

0

xn−1ψ(x)dx = 0, for n = 1, 2, · · · . (2.2)

Then

ψ(x) ≡ 0, in 0 ≤ x ≤ 1. (2.3)

Proof. If ψ(x) is not identically zero in the closed interval [0, 1], there must be
an interval [a, b] where 0 < a < b < 1 in which ψ(x) is always positive (or always
negative). We shall suppose the first alternative. By considering the function
(b− x)(x− a) we see that if

c = max[ab, (1− a)(1− b)],
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then

1 +
1
c
(b− x)(x− a) > 1, when a < x < b

and

0 < 1 +
1
c
(b− x)(x− a) < 1, when 0 < x < a and b < x < 1.

Thus the function

p(x) = {1 + (1/c)(b− x)(x− a)}r,

can be made as large as we please in a < x < b and as small as we like in
0 < x < a, b < x < 1 by appropriate choice of r. But p(x) is a polynomial in x,
and by our hypothesis

∫ 1

0

xn−1ψ(x)dx = 0, for n = 1, 2, · · ·

we should have ∫ 1

0

p(x)ψ(x)dx = 0,

for every positive integer r. But the above inequalities imply that, by choosing
r large enough, ∫ 1

0

p(x)ψ(x)dx > 0.

The first alternative thus leads to a contradiction. A similar argument applies
if we assume ψ(x) < 0 in (a,b). It therefore follows that ψ(x) ≡ 0 in [0, 1]. ¥

Now suppose that g(t) is another continuous function satisfying (2.1) and define
h(t) = f(t) − g(t) which, as the difference of two continuous functions, is also
continuous. Then ∫ ∞

0

e−sth(t)dt = 0, s ≥ γ. (2.4)

Let s = γ + n, where n is any positive integer. Then
∫ ∞

0

e−(γ+n)th(t)dt =
∫ ∞

0

e−nt
(
e−γth(t)

)
dt,

=
[
e−nt

∫ t

0

e−γuh(u)du

]∞

0

+ n

∫ ∞

0

e−nt

[∫ t

0

e−γuh(u)du

]
dt,

= n

∫ ∞

0

e−nt

[∫ t

0

e−γuh(u)du

]
dt,

and thus it follows from (2.4) that
∫ ∞

0

e−ntφ(t)dt = 0,



2.1. THE UNIQUENESS PROPERTY 25

where

φ(t) =
∫ t

0

e−γth(t)dt. (2.5)

In (2.5) put x = e−t, ψ(x) = φ[ln(1/x)] . Then ψ(x) is continuous in the closed
interval [0, 1], since we take

ψ(0) = lim
t→∞

φ(t) and ψ(1) = φ(0) = 0.

Also ∫ 1

0

xn−1ψ(x)dx = 0, n = 1, 2, · · · .

It follows from the lemma that ψ(x) ≡ 0 in 0 ≤ x ≤ 1, and therefore

φ(t) =
∫ t

0

e−γth(t)dt = 0, when t ≥ 0. (2.6)

Because e−γth(t) is continuous when t ≥ 0, it follows from (2.6) that e−γth(t) =
0 when t ≥ 0, i.e. h(t) = 0, when t ≥ 0. Consequently, g(t) = f(t) when t ≥ 0
and the theorem is proved. ¥

The theorem gives us some confidence that a given Laplace transform f̄(s) will
uniquely determine f(t) if exact methods are used to determine L−1{f̄(s)}. As
Bellman and Roth [18] have pointed out Laplace transform inversion is, in many
respects, an ill-conditioned problem. They give the examples of

f̄1(s) = L
{

a

2
√

π

e−a2/4t

t3/2

}
= e−a

√
s,

and
f̄2(s) = L{sin bt} = b/(s2 + b2).

The transform f̄1(s) is uniformly bounded by 1 for all positive s and a whilst
the function f1(t) has a maximum at t = a2/6 and steadily decreases to zero.
In fact, as a → 0 it becomes more steadily spiked in the vicinity of t = 0 and
provides a good approximation (after scaling) to the impulse function δ(t). The
transform f̄2(s) is uniformly bounded by 1/b for all positive s and b and is
clearly the transform of a function which oscillates more and more rapidly as b
increases but which is always bounded by 1. From the above analysis it follows
that the function

1 + 10−20f1(t) + sin 1020t,

will have the same Laplace transform as f(t) = 1 to almost 20 significant dig-
its when a = 1. The implication is that the spike behaviour, represented by
the function 10−20f1(t), and the extremely rapid oscillations, represented by
sin 1020t, are virtually impossible to be filtered out by numerical techniques. In
what follows we shall assume, for the most part, that our given functions are
essentially smooth.
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2.2 The Bromwich Inversion Theorem

In the previous chapter we saw that we could determine the function f(t) from
its Laplace transform f̄(s) provided that it was possible to express f̄(s) in
terms of simpler functions with known inverse transforms. This is essentially a
haphazard process and we now give a direct method which has its basis in the
following theorem :-

Theorem 2.2 The Inversion Theorem.
Let f(t) have a continuous derivative and let |f(t)| < Keγt where K and γ are
positive constants. Define

f̄(s) =
∫ ∞

0

e−stf(t)dt, <s > γ. (2.7)

Then

f(t) =
1

2πi
lim

T→∞

∫ c+iT

c−iT

estf̄(s)ds, where c > γ (2.8)

or

f(t) =
1

2πi

∫ c+i∞

c−i∞
estf̄(s)ds. (2.8′)

Proof. We have

I =
1

2πi

∫ c+iT

c−iT

estf̄(s)ds =
1

2πi

∫ c+iT

c−iT

estds

∫ ∞

0

e−suf(u)du,

=
1

2πi

∫ ∞

0

f(u)du

∫ c+iT

c−iT

es(t−u)ds,

the change in order of integration being permitted since we have uniform con-
vergence. Thus

I =
1

2πi

∫ ∞

0

f(u)du

t− u

(
e(γ+iT )(t−u) − e(γ−iT )(t−u)

)
,

=
1
π

∫ ∞

0

eγ(t−u)f(u)
sin T (t− u)

t− u
du.

Now let u = t+ θ, F(θ) = e−γθf(t+ θ). The right hand side of the integral then
becomes

1
π

∫ ∞

−t

F(θ)
sin Tθ

θ
dθ. (2.9)

We divide the integral in (2.9) into two parts
∫∞
0

and
∫ 0

−t
. We write

∫ ∞

0

F(θ)
sin Tθ

θ
dθ = F(0)

∫ δ

0

sin Tθ

θ
dθ +

∫ δ

0

F(θ)− F(0)
θ

sin Tθdθ

+
∫ X

δ

F(θ)
sinTθ

θ
dθ +

∫ ∞

X

F(θ)
sin Tθ

θ
dθ.

(2.10)
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We can choose δ small and X large so that
∣∣∣∣∣
∫ δ

0

F(θ)− F(0)
θ

sin Tθdθ

∣∣∣∣∣ < ε,

and ∣∣∣∣
∫ ∞

X

F(θ)
sin Tθ

θ
dθ

∣∣∣∣ < ε,

for all T . Next consider ∫ X

δ

F(θ)
sin Tθ

θ
dθ.

Integrating by parts

∫ X

δ

F(θ)
sin Tθ

θ
dθ =

[
−cos Tθ

Tθ
F(θ)

]X

δ

+
1
T

∫ X

δ

cos Tθ
d

dθ

(
F(θ)

θ

)
dθ,

= O(1/T ),

since each term involves 1/T and the integral is bounded. Again,

∫ δ

0

sin Tθ

θ
dθ =

∫ Tδ

0

sin φ

φ
dφ, (φ = Tθ)

=
π

2
+ O

(
1
T

)
,

since we know that ∫ ∞

0

sin φ

φ
dφ =

π

2
.

Combination of the above results gives

lim
T→∞

∫ ∞

0

F(θ)
sin Tθ

θ
dθ = 1

2πF(0) = 1
2πf(t).

Similarly we can express
∫ 0

−t

F(θ)
sin Tθ

θ
dθ =

∫ −δ

−t

F(θ)
sinTθ

θ
dθ + F(0)

∫ 0

δ

sin Tθ

θ
dθ

+
∫ 0

δ

F(θ)− F(0)
θ

sin Tθdθ.

A similar argument to that used previously yields

lim
T→∞

∫ 0

−t

F(θ)
sin Tθ

θ
dθ = 1

2πf(t).

The inversion formula follows by adding the two parts of the integral and divid-
ing by π. ¥
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In particular, we note that if f(t) is a real function we can write (2.8′) in the
alternative forms

f(t) =
ect

π

∫ ∞

0

[<{f(c + iω)} cos tω −={f(c + iω)} sin tω]dω, (2.11)

=
2ect

π

∫ ∞

0

<{f(c + iω)} cos tω dω, (2.12)

=
−2ect

π

∫ ∞

0

={f(c + iω)} sin tω dω. (2.13)

It has been assumed that the function f(t) is continuous and differentiable.
However, it may be shown that where f(t) has a finite number of discontinuities
and t is such a point then the inversion formula is

1
2πi

∫ c+i∞

c−i∞
estf̄(s)ds = 1

2 [f(t−) + f(t+)]. (2.14)

An analogous result to (2.8) holds for the inversion of the two-dimensional
Laplace transform, namely:-

Theorem 2.3 The Two-dimensional Inversion Formula.
Suppose f(t1, t2) possesses first order partial derivatives ∂f/∂t1 and ∂f/∂t2 and
second order derivative ∂2f/∂t1∂t2 and there exist positive constants M, γ1, γ2

such that for all 0 < t1, t2 < ∞

|f(t1, t2)| < Meγ1t1+γ2t2 ,

∣∣∣∣
∂2f

∂t1∂t2

∣∣∣∣ < Meγ1t1+γ2t2 .

Then if

f̄(s1, s2) =
∫ ∞

0

∫ ∞

0

e−s1t1−s2t2f(t1, t2)dt1dt2,

we have

f(t1, t2) = lim
T1 →∞
T2 →∞

1
(2πi)2

∫ c1+iT1

c1−iT1

∫ c2+iT2

c2−iT2

es1t1+s2t2 f̄(s1, s2)ds1ds2, (2.15)

or

f(t1, t2) =
1

(2πi)2

∫ c1+i∞

c1−i∞

∫ c2+i∞

c2−i∞
es1t1+s2t2 f̄(s1, s2)ds1ds2, (2.16)

where c1 > γ1 and c2 > γ2. ¥

A proof of this theorem can be found in Ditkin and Prudnikov [67].

Traditionally the inversion theorem has been applied by resorting to the cal-
culus of residues. If a function g(s) is regular inside a closed contour C except
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for a finite number of poles located at s1, s2, · · · , sn then a well-known theorem
of Cauchy informs us that

∫

C
g(s)ds = 2πi

n∑

k=1

Rk, (2.17)

where

Rk = residue of g(s) at s = sk, (2.18)
= lim

s→sk

(s− sk)g(s), (2.19)

if sk is a simple pole. If sk is a pole of order m then

Rk =
1

(m− 1)!

[
dm−1

dsm−1
{(s− sk)mg(s)}

]

s=sk

. (2.20)

Another useful application of Cauchy’s theorem which follows from (2.17) is
that if C1 and C2 are closed curves such that C1 ⊂ C2 then

∫

C2
g(s)ds =

∫

C1
g(s)ds + 2πi

n∑

k=1

Rk, (2.21)

where Rk denotes the residue at the pole s = sk which lies in the region C2−C1.
In particular, we can establish that if B := {s = c + it,−∞ < t < ∞} and
B′ := {s = c′ + it,−∞ < t < ∞} where c′ < c then

∫

B

g(s)ds =
∫

B′
g(s)ds + 2πi

n∑

k=1

Rk, (2.22)

where Rk is the residue at the pole sk which lies in the strip c′ < <s < c.
In a large number of applications to determine the inverse transform we employ
a contour C which consists of a circular arc Γ of radius R cut off by the line
<s = γ, as in Figure 2.1.
If f̄(s) satisfies the conditions of the following lemma then the lemma implies
that f(t) is determined by the sum of the residues at all singularities (i.e. poles)
to the left of <s = γ.

Lemma 2.2 If |f̄(s)| < CR−ν when s = Reiθ, −π ≤ θ ≤ π, R > R0, where
R0, C and ν(> 0) are constants then, for t > 0,

∫

Γ1

estf̄(s)ds → 0 and
∫

Γ2

estf̄(s)ds → 0,

as R →∞ where Γ1 and Γ2 are respectively the arcs BCD and DEA of Γ.
Proof. Consider first

IΓ1 =
∫

Γ1

estf̄(s)ds.
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Figure 2.1: The standard Bromwich contour

The arc Γ1 is made up of the arcs BC and CD. On BC, θ varies between
α = cos−1(γ/R) and π/2. Thus

|IBC | < eγt · C

Rν
·
∫ π/2

α

dθ,

=
Ceγt

Rν
R sin−1(γ/R),

→ 0, as R →∞,

since, as R →∞, R sin−1(γ/R) → γ.
For the arc CD,

|ICD| < C

Rν
·R

∫ π

π/2

eRt cos θdθ,

=
C

Rν
·R

∫ π/2

0

e−Rt sin φdφ,

and, since sin φ/φ ≥ 2/π, 0 < φ ≤ π/2,

<
C

Rν
·R

∫ π/2

0

e−2Rtφ/πdφ,

<
πC

2tRν
.
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As t > 0 we see that |IBC | → 0 as R →∞. The same reasoning shows that the
integrals over the arcs DE and EA can be made as small as we please and thus
we have established the lemma. ¥

We give some examples to illustrate the application of the inversion theorem.

Example 2.1 Find L−1{1/s(s− 1)3}.
This example was considered by other means in the previous chapter. It is clear
from the form of f̄(s) that it has an isolated pole at s = 0 and a pole of order
3 at s = 1. If we take C to be the contour in Figure 2.1 with γ > 1 then, with
our previous notation for residues,

∫

C
estf̄(s)ds = 2πi(R1 + R2),

where

R1 = lim
s→0

(s− 0)est

s(s− 1)3
,

and

R2 = lim
s→1

[
1
2!

d2

ds2

(
(s− 1)3est

s(s− 1)3

)]
,

giving
R1 = −1 and R2 = et − tet + 1

2 t2et.

Now let the radius of the circular section Γ of C tend to infinity and we obtain

f(t) = R1 + R2 = −1 + et(1− t + 1
2 t2),

which is exactly the result obtained previously.

Now consider the following problem.

Example 2.2 Determine L−1(1/s) tanh 1
4sT.

This is not a rational function where we can apply the technique of partial
fractions and we thus have to resort to the Inversion Theorem. Since tanhx =
sinhx/ cosh x we see that estf̄(s) has poles where cosh 1

4sT = 0, i.e., s = sn =
2i(2n + 1)π/T, n = 0,±1,±2, · · · . Note that s = 0 is not a pole because
sinh 1

4sT/s → 1
4T as s → 0. The residue Rn at a typical pole sn is given by

Rn = lim
s→sn

(s− sn)
est sinh 1

4sT

s cosh 1
4sT

.

Application of l’Hôpital’s rule gives

Rn = lim
s→sn

est sinh 1
4sT

1
4sT sinh 1

4sT
,

=
4esnt

snT
= 2e2(2n+1)iπt/T /(2n + 1)iπ.



32 CHAPTER 2. INVERSION FORMULAE AND PRACTICAL RESULTS

Treating the contour C as before we find

f(t) =
∞∑
−∞

Rn,

which simplifies to

f(t) =
4
π

∞∑
0

sin(4n + 2)πt/T

2n + 1
.

This turns out to be the Fourier series representation of the square wave function
so that we have no contradiction with the results of the last chapter.

Another example where the Inversion Theorem is required is in modelling the
vibration of a beam.

Example 2.3 A beam of length L has one end (x = 0) fixed and is initially
at rest. A constant force F0 per unit area is applied longitudinally at the free
end. Find the longitudinal displacement of any point x of the beam at any time
t > 0.
Denote by y(x, t) the longitudinal displacement of any point x of the beam
at time t. Then it can be shown that y(x, t) satisfies the partial differential
equation

∂2y

∂t2
= c2 ∂2y

∂x2
, 0 < x < L, t > 0,

where c is a constant, subject to the boundary conditions

y(x, 0) = 0,
∂

∂t
y(x, 0) = 0,

y(0, t) = 0,
∂

∂x
y(L, t) = F0/E,

E being Young’s modulus for the beam.
Taking Laplace transforms of the differential equation we have

s2ȳ(x, s)− sy(x, 0)− ∂

∂t
y(x, 0) = c2 d2ȳ

dx2
,

or
d2ȳ

dx2
− s2

c2
ȳ = 0,

together with

ȳ(0, s) = 0,
d

dx
ȳ(L, s) =

F0

Es
.

The general solution of the ordinary differential equation is

ȳ(x, s) = A cosh(sx/c) + B sinh(sx/c).

The boundary condition ȳ(0, s) = 0 implies A = 0 and the remaining condition
yields

B = cF0/Es2 cosh(sL/c),
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so that

ȳ(x, s) =
cF0

E
· sinh(sx/c)
s2 cosh(sL/c)

.

Now consider ∫

C
estȳ(x, s)ds,

where C does not pass through any poles of the integrand. The integrand appears
to have a double pole at s = 0 but as (sinh s/s) → 1 as s → 0 it is clear that
the pole is in fact simple. There are also simple poles where

cosh(sL/c) = 0,

i.e.

s = sn = (n− 1
2 )πic/L, n = 0,±1,±2, · · · .

By choosing R the radius of the circular part of C to be nπc/L we ensure that
there are no poles on the boundary of C. We also have to check that the integrand
satisfies the conditions of the Lemma. Carslaw and Jaeger [31] establish this for
similar problems and the reader is referred to that text to obtain an outline of
the proof. The residue at s = 0 is

lim
s→0

(s− 0)
cF0

E
· est sinh(sx/c)
s2 cosh(sL/c)

= lim
s→0

cF0

E

est(x/c) cosh(sx/c)
cosh(sL/c)

=
F0x

E
.

The residue, Rn, at s = sn is given by

Rn = lim
s→sn

(s− sn)
cF0

E

[
est sinh(sx/c)
s2 cosh(sL/c)

]
,

= lim
s→sn

cF0

E
· est sinh(sx/c)
s2(L/c) sinh(sL/c)

,

=
c2F0

EL
· e(n− 1

2 )πict/L sin(n− 1
2 )πx/L

−(n− 1
2 )2(πc/L)2 sin(n− 1

2 )π
,

after simplification. Note the use of l’Hôpital’s rule in the determination of the
above residues.
Now let R → ∞ then, because the integral over the curved part of C tends to
zero by the Lemma, it follows that

y(x, t) =
F0x

E
+

∞∑
−∞

(−1)n4F0L

Eπ2
· e(n− 1

2 )πict/L sin(n− 1
2 )πx/L

(2n− 1)2
.

In the summation consider addition of the terms n = m and n = −m+1 (m =
1, 2, · · · ). We find that

y(x, t) =
F0

E

[
x +

8L

π2

∞∑
m=1

(−1)n

(2n− 1)2
sin

(2n− 1)πx

2L
cos

(2n− 1)πct

2L

]
.
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While we obviously have a great deal of satisfaction in achieving a result like
this we have to bear in mind that it is no easy task to sum the series obtained.

We now consider another example which requires a modification of the Bromwich
contour.

Example 2.4 Consider the solution of the partial differential equation

∂y

∂t
=

∂2y

∂x2
, x > 0, t > 0,

with

y = 1, when x = 0, t > 0,

y = 0, when x > 0, t = 0.

This type of equation arises when considering the flow of heat in a semi-infinite
solid. Taking the Laplace transform of the partial differential equation we obtain

d2ȳ

dx2
− sȳ = 0, x > 0,

with initial condition
ȳ = 1/s, when x = 0.

The solution of this ordinary differential equation which is finite as x →∞ is

ȳ =
1
s

exp(−x
√

s),

and the inversion theorem gives

y =
1

2πi

∫ γ+i∞

γ−i∞
est−x

√
s ds

s
. (2.23)

The integrand in (2.23) has a branch point at the origin and it is thus necessary
to choose a contour which does not enclose the origin. We deform the Bromwich
contour so that the circular arc Γ1 is terminated just short of the horizontal axis
and the arc Γ2 starts just below the horizontal axis. In between the contour
follows a path DF which is parallel to the axis, followed by a circular arc Γ′

enclosing the origin and a return section F ′D′ parallel to the axis meeting the
arc Γ2 — see Figure 2.2.
As there are no poles inside this contour C we have

∫

C
est−x

√
s ds

s
= 0.

Now on Γ1 and Γ2 ∣∣∣∣
1
s
e−x

√
s

∣∣∣∣ < 1/|s|,
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Figure 2.2: A modified Bromwich contour

so that the integrals over these arcs tend to zero as R →∞. Over the circular
arc Γ′ as its radius r → 0, we have

∫

Γ′
est−x

√
s ds

s
→

∫ −π

π

ereiθ−x
√

reiθ/2 ireiθdθ

reiθ
, (r → 0),

→
∫ −π

π

idθ = −2πi.

Over the horizontal sections DF and F′D′ the integrals are
∫ r

R

eueiπt−x
√

ueiπ/2 du

u
and

∫ R

r

eue−iπt−x
√

ue−iπ/2 du

u
.

As r → 0 and R →∞ their sum becomes∫ ∞

0

e−ut[−e−ix
√

u + eix
√

u]
du

u
,

i.e.,

2i

∫ ∞

0

e−ut sin x
√

u
du

u
,

or
4i

∫ ∞

0

e−v2t sin vx
dv

v
.

Now from Gradshteyn and Ryzhik [102] we know that
∫ ∞

0

e−v2t sin vx
dv

v
=
√

π

∫ x/2
√

t

0

e−v2
dv.
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Hence

y =
1

2πi

∫ γ+i∞

γ−i∞
est−x

√
s ds

s
= 1− 2√

π

∫ x/2
√

t

0

e−v2
dv,

yielding

y = 1− erf
(

x

2
√

t

)
.

An alternative method to contour integration for finding inverse transforms has
been given by Goldenberg [100]. This depends on f̄(s) satisfying a differential
equation of the form

αn(s)
dnf̄

dsn
+ αn−1(s)

dn−1f̄

dsn−1
+ · · ·+ α1(s)

df̄

ds
+ α0(s)f̄ = β(s),

where the αi(s) (i = 0, 1, · · · , n) are polynomials of degree at most i in s and
the inverse transform of β(s) is known.

Example 2.5 Determine f(t) when

f̄(s) =
1
s

tan−1(s + a), a > 0.

Writing the above as
sf̄(s) = tan−1(s + a),

differentiation produces

s
df̄

ds
+ f̄ =

1
(s + a)2 + 1

.

Inversion yields

−t
df

dt
= e−at sin t,

and hence

f(t) = f(0)−
∫ t

0

e−at sin t

t
dt.

As f̄(s) satisfies the conditions of Theorem 2.5 we have

f(0) = lim
s→∞

sf̄(s) = lim
s→∞

tan−1(s + a) = π/2.

Thus

f(t) =
π

2
−

∫ t

0

e−at sin t

t
dt.

Goldenberg shows that this result can be expressed in terms of the complex
exponential integral E1(z) and finds

L−1

{
1
s

tan−1(s + a)
}

= tan−1 a−=E1(at + it).
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2.3 The Post-Widder Inversion Formula

The Bromwich inversion formula of the last section is not the only way to
represent the inverse transform as we also have the following result of Post [190]
and Widder [253]:-

Theorem 2.4 The Post-Widder Theorem.
If the integral

f̄(s) =
∫ ∞

0

e−suf(u)du, (2.24)

converges for every s > γ, then

f(t) = lim
n→∞

(−1)n

n!

(n

t

)n+1

f̄ (n)
(n

t

)
, (2.25)

for every point t(> 0) of continuity of f(t).
The advantage of formula (2.25) lies in the fact that f is expressed in terms of
the value of f̄ and its derivatives on the real axis. A big disadvantage however is
that convergence to f(t) is very slow. We shall assume that the integral (2.24)
converges absolutely but this restriction is only imposed in order to simplify the
proof.
Proof. Differentiating (2.24) with respect to s we obtain, after substituting
s = n/t,

f̄ (n)
(n

t

)
= (−1)n

∫ ∞

0

un exp
(
−nu

t

)
f(u)du.

The right hand side of (2.25) is thus

lim
n→∞

nn+1

enn!
1
t

∫ ∞

0

[u

t
exp

(
1− u

t

)]n

f(u)du.

By Stirling’s approximation for n! we know that

lim
n→∞

nn
√

2π n

enn!
= 1,

and thus we have to prove that

f(t) = lim
n→∞

1√
2π t

∫ ∞

0

n1/2
[u

t
exp

(
1− u

t

)]n

f(u)du. (2.26)

Let δ be a fixed positive number such that δ < t and expand the integral in
(2.26) in the form

∫ ∞

0

=
∫ t−δ

0

+
∫ t+δ

t−δ

+
∫ ∞

t+δ

= I1 + I2 + I3.

As the function
x exp(1− x), (2.27)



38 CHAPTER 2. INVERSION FORMULAE AND PRACTICAL RESULTS

increases monotonically from 0 to 1 in [0, 1] we have

t− δ

t
exp

(
1− t− δ

t

)
= η < 1,

and hence

|I1| ≤ n1/2ηn

∫ t−δ

0

|f(u)|du,

which implies that I1 → 0 as n → ∞. Again, in [1,∞), the function (2.27)
decreases monotonically from 1 to 0 and thus

t + δ

t
exp

(
1− t + δ

t

)
= ζ < 1,

which implies that

I3 = n1/2

∫ ∞

t+δ

[u

t
exp

(
1− u

t

)]n−n0
[u

t
exp

(
1− u

t

)]n0

f(u)du,

so that

|I3| ≤ n1/2ζn−n0

∫ ∞

t+δ

[u

t
exp

(
1− u

t

)]n0 |f(u)|du,

≤ n1/2ζn(e/ζ)n0

∫ ∞

t+δ

(u

t

)n0

exp
(
−n0u

t

)
|f(u)|du.

This last integral is convergent if n0/t > γ. Hence I3 → 0 as n →∞. We have
still to consider I2. Let t be a point of continuity of f . Then, given any ε > 0
we can choose δ > 0 such that

f(t)− ε < f(u) < f(t) + ε for t− δ < u < t + δ.

Then
(f(t)− ε)I < I2 < (f(t) + ε)I, (2.28)

where

I =
∫ t+δ

t−δ

n1/2
[u

t
exp

(
1− u

t

)]n

du.

In the preceding argument we have not specified the function f(t) and the
results hold generally. In particular, when f(t) = 1, f̄(s) = 1/s, f̄ (n)(s) =
(−1)nn!/sn+1 giving

f̄ (n)(n/t) = (−1)nn!(t/n)n+1.

Substituting in (2.25) we find that (2.25) holds. Since (2.25) and (2.26) are
equivalent then (2.26) must also hold for f(t) = 1. Thus

1 = lim
n→∞

1√
2πt

(I1 + I2 + I3) for f(t) = 1.
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Now we have already proved that I1 and I3 tend to 0 whatever the value of f(t)
and, when f(t) = 1, I2 = I. Consequently we get

1 = lim
n→∞

1√
2πt

I. (2.29)

By (2.28) we find that the lower and upper limits of the integral in (2.26) lie
between f(t) − ε and f(t) + ε. This implies that both limits equal f(t) as ε is
arbitrarily small. Hence (2.26) and the equivalent formula (2.25) are proved. ¥

Example 2.6 Given f̄(s) = 1/(s + 1). Determine f(t).
We find by repeated differentiation that

f̄ (n)(s) = (−1)n n!
(s + 1)n+1

.

Thus

f(t) = lim
n→∞

(−1)n

n!

(n

t

)n+1 (−1)nn!
(n

t + 1)n+1
,

= lim
n→∞

(
1 +

t

n

)−(n+1)

,

= lim
n→∞

(
1 +

t

n

)−n

· lim
n→∞

(
1 +

t

n

)−1

= e−t.

Jagerman [116] has established that the successive convergents

fk(t) = s
(−s)k−1f̄ (k−1)(s)

(k − 1)!

∣∣∣∣
s=k/t

, t > 0, (2.30)

can be generated via the formula

sf̄ [s(1− z)] =
∑

n≥1

fn

(n

s

)
zn−1, (2.31)

and this relationship will be the basis of alternative numerical methods for
obtaining the inverse Laplace transform.

2.4 Initial and Final Value Theorems

Sometimes we know a Laplace transform f̄(s) and we are mainly interested in
finding some properties of f(t), in particular its limits as t → 0 and t → ∞
without the trouble of determining the complete theoretical solution. These are
quite important properties to know and will be used in the development of some
of the numerical methods which are discussed in later chapters.
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Theorem 2.5 The Initial Value theorem.
If as s →∞, f̄(s) → 0, and, in addition,

f(t) → f(0) as t → 0

and

e−stf(t) → 0 as t →∞,

then
lim

s→∞
sf̄(s) = lim

t→0
f(t). (2.32)

Proof. We know that f̄(s) is defined by

f̄(s) =
∫ ∞

0

e−stf(t)dt, (2.33)

and we assume that the integral is absolutely convergent if s ≥ γ. Write (2.33)
in the form

f̄(s) =
∫ T1

0

e−stf(t)dt +
∫ T2

T1

e−stf(t)dt +
∫ ∞

T2

e−stf(t)dt. (2.34)

Then, given an arbitrarily small positive number ε, we can choose T1 so small
that ∣∣∣∣∣

∫ T1

0

e−stf(t)dt

∣∣∣∣∣ <

∫ T1

0

e−st|f(t)|dt < 1
3ε, s ≥ γ

because of the absolute convergence of (2.33). For the same reason we can take
T2 so large that

∣∣∣∣
∫ ∞

T2

e−stf(t)dt

∣∣∣∣ <

∫ ∞

T2

e−st|f(t)|dt < 1
3ε, s ≥ γ

Finally, we can choose s so large that
∣∣∣∣∣
∫ T2

T1

e−stf(t)dt

∣∣∣∣∣ < e−sT1

∫ T2

T1

|f(t)|dt < 1
3ε, s ≥ γ

It follows from (2.34) that
lim

s→∞
f̄(s) = 0. (2.35)

The theorem now follows on applying the above result to df/dt since, by(1.14),
L{df/dt} = sf̄(s)− f(0+). ¥

Theorem 2.6 The Final Value theorem.
If f(γ) exists, and s → γ+ through real values, then

f̄(s) → f̄(γ). (2.36)
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Further,

lim
s→0

f̄(s) =
∫ ∞

0

f(t)dt, (2.37)

lim
s→0

sf̄(s) = lim
t→∞

f(t), (2.38)

provided that the quantities on the right-hand sides of (2.37) and (2.38) exist
and in addition, for (2.38), we require e−stf(t) → 0 as t →∞ and f(t) → f(0)
as t → 0.
Proof. We write

∣∣∣∣
∫ ∞

0

e−γtf(t)dt−
∫ ∞

0

e−stf(t)dt

∣∣∣∣ ≤
∣∣∣∣∣
∫ T

0

e−γtf(t)dt−
∫ T

0

e−stf(t)dt

∣∣∣∣∣

+
∣∣∣∣
∫ ∞

T

e−γtf(t)dt

∣∣∣∣ +
∣∣∣∣
∫ ∞

T

e−stf(t)dt

∣∣∣∣ .

(2.39)

Given any arbitrarily small number ε the last two terms in (2.39) can be made
less than ε/3 by appropriate choice of T , by virtue of the fact that the infinite
integrals on the left hand side are known to be convergent. Also, by continuity,
we can find a positive number δ such that the first term on the right hand side
of (2.39) is less than ε/3 when 0 ≤ s− γ ≤ δ. It follows that

|f̄(s)− f̄(γ)| ≤ ε,

which proves (2.36). Condition (2.37) is just the case where γ = 0. Application
of (2.37) to the function df/dt gives the result (2.38). Hence the theorem is
proved. ¥

Note that the theorem requires the right hand sides of (2.37) and (2.38) to exist
for the left hand side to exist and be equal to it. The converse is not true as
can be seen by the example f(t) = sin ωt. For this function

sf̄(s) =
ωs

s2 + ω2
, lim

s→0
sf̄(s) = 0.

However, because of the oscillatory nature of f(t)

lim
t→∞

f(t) does not exist.

If stronger conditions are imposed on f̄(s) (or f(t)) then the converse may be
true.

Example 2.7 f̄(s) = 1/s(s + a), a > 0.
We can easily establish that

f(t) = (1/a)[1− e−at].
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Thus
lim

t→∞
f(t) = 1/a.

Application of the theorem gives

lim
s→0

sf̄(s) = lim
s→0

1/(s + a) = 1/a,

which confirms the result obtained previously. Also, applying the initial value
theorem gives

lim
s→∞

sf̄(s) = lim
s→∞

1/(s + a) = 0 = f(0),

which confirms the result that

lim
t→0

f(t) = 0.

2.5 Series and Asymptotic Expansions

In the previous section we were interested in estimating the limiting value of
f(t), if it existed, as t → 0 and t →∞. In this section we give some results which
are required for the development of certain numerical methods. In particular,
we have

Theorem 2.7 If f̄(s) can be expanded as an absolutely convergent series of the
form

f̄(s) =
∞∑

n=0

an

sλn
, |s| > R (2.40)

where the λn form an increasing sequence of numbers 0 < λ0 < λ1 < · · · → ∞
then

f(t) =
∞∑

n=0

antλn−1

Γ(λn)
. (2.41)

The series (2.41) converges for all real and complex t. ¥

Another important result is:-

Theorem 2.8 If f̄(s) can be expanded in the neighbourhood of s = αi, in the
complex s-plane, in an absolutely convergent power series with arbitrary expo-
nents

f̄(s) =
∞∑

n=0

bn(s− αi)µn , −N < µ0 < µ1 < · · · → ∞ (2.42)

then there exists a contribution to the asymptotic expansion of f(t) as t → ∞
of the form

eαit
∞∑

n=0

bnt−µn−1

Γ(−µn)
, (2.43)

where 1/Γ(−µn) = 0 if µn is a positive integer or zero. ¥
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See Doetsch [70] for proofs.
We end this section with a statement of Watson’s lemma — see Olver [163] for
a proof of this result.

Lemma 2.3 Watson’s Lemma
Suppose that the function f(t) satisfies

f(t) ∼
∞∑

k=0

aktαk as t → 0+,

where −1 < <α0 < <α1 < · · · , and limk→∞<αk = ∞. Then, for any δ > 0,

f̄(s) ∼
∞∑

k=0

akΓ(αk + 1)
sαk+1

as s →∞, | arg s| < 1
2π − δ.

¥

2.6 Parseval’s Formulae

It is well-known that if a function f(x) possesses a Fourier series expansion, i.e.

f(x) = 1
2a0+a1 cos x+b1 sinx+· · ·+an cosnx+bn sin nx+· · · , −π < x < π

then
1
π

∫ π

−π

|f(x)|2dx = 1
2a2

0 +
∞∑

i=1

(a2
i + b2

i ). (2.44)

The result (2.44) is called Parseval’s formula. A similar result holds for Fourier
transforms, namely

∫ ∞

−∞
|F(ω)|2dω =

∫ ∞

−∞
|f(t)|2dt, (2.45)

where F(ω) is the Fourier transform of f(t) defined by

F(ω) =
1√
2π

∫ ∞

−∞
f(t)eiωtdt, −∞ < t < ∞

We also mention the associated Fourier sine and cosine transforms defined by

FS(ω) =

√
2
π

∫ ∞

0

f(t) sin ωtdt,

FC(ω) =

√
2
π

∫ ∞

0

f(t) cos ωtdt,
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We also recall at this point the inversion formulae for these transforms, namely

f(t) =
1√
2π

∫ ∞

−∞
F(ω)e−itωdω,

f(t) =

√
2
π

∫ ∞

0

FS(ω) sin tω dω,

and

f(t) =

√
2
π

∫ ∞

0

FC(ω) cos tω dω.

We now establish formally the equivalent Parseval result for Laplace trans-
forms

1
2π

∫ ∞

−∞
|f̄(c + it)|2dt =

∫ ∞

0

e−2cu[f(u)]2dt. (2.46)

We have
∫ ∞

−∞
|f̄(c + it)|2dt =

∫ ∞

−∞
f̄(c + it)f̄(c− it)dt,

=
∫ ∞

−∞
f̄(c + it)

(∫ ∞

0

f(u)e−(c−it)udu

)
dt,

=
∫ ∞

0

f(u)
(∫ ∞

−∞
f̄(c + it)e(c+it)udt

)
e−2cudu,

=
∫ ∞

0

f(u) · 2πf(u) · e−2cudu,

= 2π

∫ ∞

0

e−2cu[f(u)]2du,

which is equivalent to (2.46). This argument needs some justification and a
more rigorous proof is given in Watson [246]. A useful source of information for
proofs and additional theoretical results on Integral Transforms is Davies [59].



Chapter 3

The Method of Series
Expansion

3.1 Expansion as a Power Series

We have already seen that if n is an integer

L{tn} =
n!

sn+1

and thus

tn

n!
= L−1

{
1

sn+1

}
, n ≥ 0.

Consequently, if we can express f̄(s) in the form

f̄(s) =
a1

s
+

a2

s2
+ · · ·+ an

sn
+ · · · (3.1)

we have

f(t) = a1 + a2t + a3
t2

2!
+ · · ·+ an

tn−1

(n− 1)!
+ · · · (3.2)

(see Theorem 2.7) and by computing this series we can, in theory, evaluate f(t)
for any t. We shall illustrate the method by examples.

Example 3.1 Given f̄(s) = 1/(1 + s). Determine f(t).
We write

f̄(s) =
1

s(1 + 1
s )

=
1
s
(1− 1

s
+

1
s2
− 1

s3
+ · · · )

=
1
s
− 1

s2
+

1
s3
− 1

s4
+ · · · .
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k t S
(k)
1

15 20 2.0611536224827× 10−9

16 20 2.0611536224387× 10−9

Table 3.1: Iterated Aitken algorithm t = 20, f(s) = 1/(s + 1).

It follows that

f(t) = 1− t +
t2

2!
− · · ·+ (−t)n

n!
+ · · · (3.3)

The series for f(t) converges for all t. However, for large t, there will be
severe cancellation in the computation of the series. Thus when t = 20, for
example, the largest term in the series is O(107) whereas the value of f(t) is
O(10−9) which indicates that 16 significant digits will be lost in the computa-
tion. Thus for this approach to be successful for large t we will require the use of
multi-length arithmetic. Moreover, with 32 decimal digit arithmetic we would
need to compute about 90 terms of the series in order to determine f(t) correct
to approximately 12 significant digits. However, we can bring into play Extrap-
olation Techniques (see Appendix §11.4 ) to speed up convergence. The iterated
Aitken algorithm yields Table 3.1 . Since the exact solution is f(t) = e−t and
f(20) = 2.06115362243855 · · ·×10−9 the above table indicates that we have been
able to achieve 20 decimal place accuracy with a knowledge of only 33 terms of
the series (3.3). It would be virtually impossible, using a Fortran program and
a computer with a word-length of 32 decimal digits, to evaluate f(t) for t = 50
by direct computation of the series (3.3) as over 40 significant digits are lost
in the computation. The extrapolation procedure is also quite likely to break
down. If extended precision arithmetic is available, as for example with Maple
or Mathematica, then it is possible to get very accurate results by computing
(3.3).

We now give some other examples of the above technique.

Example 3.2 f̄(s) = 1/(s2 + 1). Determine f(t).
We now have

f̄(s) =
1

s2(1 + (1/s2))
,

=
1
s2

(1− 1
s2

+
1
s4
− 1

s6
+ · · · ),

=
1
s2
− 1

s4
+

1
s6
− 1

s8
+ · · · ,

and it follows that

f(t) = t− t3

3!
+

t5

5!
− t7

7!
+ · · · (= sin t). (3.4)
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(3.4) is a series which converges for all t and here again direct evaluation of the
series would present computational difficulties for large t but not to quite the
same extent as in Example 3.1 as, for the most part, f(t) = O(1).

Example 3.3 f̄(s) = e−a/s/
√

s. Determine f(t).
Expansion of the term e−a/s yields

f̄(s) =
1√
s
(1− a

s
+

a2

2!s2
− a3

3!s3
+ · · · ),

=
1

s1/2
− a

s3/2
+

a2

2!s5/2
− a3

3!s7/2
+ · · · .

Now

L−1

{
1√
s

}
=

1√
πt

,

and

L−1
{

s−(n+ 1
2 )

}
=

4nn!tn−
1
2

(2n)!
√

π
,

so that

f(t) =
1√
πt

(
1− 2at +

2
3
a2t2 + · · ·+ (−4at)n

(2n)!
+ · · ·

)
. (3.5)

As t → 0+ we have f(t) → ∞ but, for all t > 0, the series in brackets in (3.5)
converges. Again in this example we face cancellation problems and thus the
range of t for which we can obtain accurate answers will be restricted. The
exact value of f(t) in this case is (πt)−

1
2 cos 2

√
at.

Example 3.4 f̄(s) = ln s/(1 + s).
This is quite different from the previous examples as we cannot expand ln s in
terms of 1/s. However, we can expand f̄(s) in the form

f̄(s) =
ln s

s

(
1− 1

s
+

1
s2
− 1

s3
+ · · ·

)
,

and from the table of transforms (Appendix §11.1) we find

L−1

{
ln s

s

}
= − ln t− C,

where C = 0.5772156649 · · · is Euler’s constant. Also,

L−1

{
ln s

sn

}
=

tn−1

Γ(n)
[ψ(n)− ln t], (n > 0),

where ψ(n) is the Psi or Digamma function defined by

ψ(1) = −C, ψ(n) = −C +
n−1∑

k=1

k−1, (n ≥ 2).
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Applying these results we obtain, after rearrangement and simplification,

f(t) = −e−t ln t +
∞∑

n=0

(−t)nψ(n + 1)
(n)!

. (3.6)

Example 3.5 f̄(s) = e−asḡ(s) where ḡ(s) = L{g(t)}.
We know that f(t) = H(t − a)g(t − a) and for t ≥ a we can proceed to get
g(t) as in previous examples and then replace t by t − a. Thus it follows from
Example 3.2 equation (3.4) that if f̄(s) = e−as/(s2 + 1) we have

f(t) = 0, t < a,

= (t− a)− (t− a)3

3!
+

(t− a)5

5!
− · · · , t ≥ a. (3.7)

We conclude this section with an example which will be used in Chapter 9 to
test the efficacy of various numerical methods of inversion.

Example 3.6 Determine a series expansion for f(t) when

f̄(s) =
1

s1/2 + s1/3
.

We can write formally

1
s1/2 + s1/3

=
1

s1/2(1 + s−1/6)
,

=
1

s1/2

[
1− 1

s1/6
+

1
s1/3

− · · ·+ (−1)n

sn/6
+ · · ·

]
,

and, using the result from §11.1,

L−1

{
1

sν+1

}
=

tν

Γ(ν + 1)
, <ν > −1

we obtain

f(t) = t−1/2

[
1

Γ( 1
2 )
− t1/6

Γ( 2
3 )

+
t1/3

Γ( 5
6 )
− · · ·+ (−1)ntn/6

Γ(n+3
6 )

+ · · ·
]

. (3.8)

Thus when t = 1, for instance, we have

f(1) =
[

1
Γ( 1

2 )
− 1

Γ( 2
3 )

+
1

Γ( 5
6 )
− · · ·

]
,

= 0.23568175397 · · · .
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3.1.1 An alternative treatment of series expansions

This approach was advocated by Chung and Sun [35] and others. It assumes
that the function f(t) can be written as

f(t) =
n∑
0

αigi(t), (3.9)

where gi(t) = exp(−it/k), k is a parameter and the αi, i = 0, 1, · · · , n are
constants. This is equivalent to writing

f(t) = α0 + α1z + α2z
2 + · · ·+ αnzn,

where z = g1(t). Since

f̄(s) =
∫ ∞

0

f(t)e−stdt,

we have

f̄((j + 1)/k) =
∫ ∞

0

f(t)e−t/kgj(t)dt,

we obtain a system of equations when we substitute f(t) from (3.9) for j =
0, 1, · · · , n, namely,




1 1
2

1
3 · · · 1

n+1
1
2

1
3

1
4 · · · 1

n+2

· · · · · · ·
1

n+1
1

n+2
1

n+3 · · · 1
2n+1







α0

α1

· · ·
αn


 =




f̄(1/k)
f̄(2/k)
· · ·

f̄((n + 1)/k)


 . (3.10)

The main snag with using this approach is that the matrix in equation (3.10)
is the well-known Hilbert matrix, which is known to be ill-conditioned. Thus,
apart from the case where f(t) exactly fits equation (3.9) for small n, we are
unlikely to get very reliable results for the αi and hence for f(t). See Lucas
[146] .

3.2 Expansion in terms of Orthogonal
Polynomials

In general, expansions in terms of orthogonal polynomials have superior conver-
gence properties to those of power series expansions. One has only to think of
the expansions for 1/(1 + x) in [0, 1]

1
1 + x

= 1− x + x2 − x3 + · · · , (3.11)

and



50 CHAPTER 3. THE METHOD OF SERIES EXPANSION

1
1 + x

=
√

2(
1
2
T ∗0 (x) + λT ∗1 (x) + λ2T ∗2 (x) + λ3T ∗3 (x) + · · · ), (3.12)

where λ = −3 + 2
√

2 and T ∗n(x) denotes the shifted Chebyshev polynomial of
the first kind of degree n. Clearly (3.11) is not convergent in the ordinary sense
when x = 1 (although it is convergent in the Cesaro sense) while (3.12) converges
for all x in the range and also inside the ellipse with foci at x = 0 and x = 1
and semi-major axis 3/2. It is thus quite natural to seek an approximation to
f(t) which has the form

f(t) =
∞∑

k=0

akφk(t), (3.13)

where φk(t) is an appropriate orthogonal polynomial (or orthogonal function).
This approach has been adopted by a number of researchers including Lanczos
[124], Papoulis [164], Piessens [179], Bellman et al [16], etc.

3.2.1 Legendre Polynomials

Recall that

f̄(s) =
∫ ∞

0

e−stf(t)dt,

and make the substitution
x = e−σt, (3.14)

where we assume σ > 0. Then

f̄(s) =
1
σ

∫ 1

0

x(s/σ−1)f(− 1
σ ln x)dx,

=
1
σ

∫ 1

0

x(s/σ−1)g(x)dx, say.

Now let s = (2r + 1)σ. Then

f̄ [(2r + 1)σ] =
1
σ

∫ 1

0

x2rg(x)dx. (3.15)

If we define g(x) in [−1, 0] by

g(−x) = g(x),

then g(x) is an even function and can be expressed as a series of even Legendre
polynomials. That is

g(x) =
∞∑

k=0

αkP2k(x), (3.16)
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or, equivalently,

f(t) =
∞∑

k=0

αkP2k(e−σt). (3.17)

The problem facing us is “how do we determine the αk ?”. First we note that
since P2k(e−σt) is an even polynomial of degree 2k in e−σt and L{e−2rσt} =
1/(s + 2rσ) for r = 0, 1, · · · , k we have

φ̄2k(s) = L{P2k(e−σt)} =
A(s)

s(s + 2σ) · · · (s + 2kσ)
, (3.18)

where A(s) is a polynomial of degree ≤ k. Further, because of the orthogonality
of the Legendre polynomials,

∫ 1

0

x2rP2k(x)dx = 0, for r < k. (3.19)

Hence, from (3.15) and (3.19), it follows that

φ̄2k[(2r + 1)σ] = 0, r = 0, 1, · · · , k − 1

and thus the roots of A(s) are

(2r + 1)σ, r = 0, 1, · · · , k − 1

and hence

φ̄2k(s) =
(s− σ)(s− 3σ) · · · (s− (2k − 1)σ)

s(s + 2σ) · · · (s + 2kσ)
A,

where A is a constant. The initial value theorem gives

lim
s→∞

sφ̄2k(s) = A = lim
t→0

P2k(e−σt) = P2k(1) = 1,

so that the Laplace transform of P2k(e−σt) is

φ̄2k(s) =
(s− σ)(s− 3σ) · · · [s− (2k − 1)σ]

s(s + 2σ) · · · (s + 2kσ)
. (3.20)

The transform of equation (3.17) yields

f̄(s) =
α0

s
+

∞∑

k=1

(s− σ) · · · [s− (2k − 1)σ]
s · · · (s + 2kσ)

αk. (3.21)

Substituting in turn s = σ, 3σ, · · · , (2k − 1)σ produces the triangular system
of equations

σf̄(σ) = α0

σf̄(3σ) =
α0

3
+

2α1

3 · 5· · ·
σf̄((2k − 1)σ) =

α0

2k − 1
+

2kα1

(2k − 1)(2k + 1)
+ · · ·

+
(2k − 2)(2k − 4) · · · 2αk−1

(2k − 1)(2k + 1) · · · (4k − 1)
(3.22)
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k αk

0 0.70710678
1 0.60394129
2 -0.56412890
3 0.45510745
4 -0.36389193
5 0.29225325
6 -0.23577693
7 0.19061806
8 -0.15396816
9 0.12382061
10 -0.09872863

Table 3.2: Coefficients in the Legendre expansion when f̄(s) = 1/
√

s2 + 1.

which can be solved sequentially.

Example 3.7 f̄(s) = 1/
√

s2 + 1.
Take σ = 1. Then, from (3.21), we have the system of equations

1√
2

= α0,

1√
10

=
α0

3
+

2α1

3 · 5 ,

1√
26

=
α0

5
+

4α1

5 · 7 +
4 · 2α2

5 · 7 · 9 , etc.,

which yields Table 3.2 .
It is clear from the table that the coefficients αk decrease very slowly. The

reason for this is that the function g(x) = f(− 1
σ | log x|) is defined and expanded

in a Legendre series on the interval [-1, 1], but has a singularity at x = 0 inside
the interval. This will be the case in general, even when f(t) is well-behaved
in [0,∞). This causes the Legendre series of g(x) to converge slowly. Thus this
method of inverting the Laplace transform is not very effective.
Additionally, because the coefficients on the diagonal decrease fairly rapidly,
there is liable to be numerical instability in the determination of the αk as k
increases. To be more precise any error in α0 could be magnified by a factor of
about 4k even if all other coefficients were computed exactly.

3.2.2 Chebyshev Polynomials

In the previous section we made the substitution x = e−σt which transformed
the interval (0,∞) into (0, 1). Now we introduce the variable θ defined by

cos θ = e−σt, (3.23)
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which transforms the infinite interval to (0, π/2) and f(t) becomes

f(− 1
σ ln cos θ) = g(θ), say.

The defining formula for the Laplace transform now takes the form

σf̄(s) =
∫ π/2

0

(cos θ)(s/σ)−1 sin θ g(θ) dθ, (3.24)

and by setting
s = (2k + 1)σ, k = 0, 1, 2, · · ·

we have

σf̄ [(2k + 1)σ] =
∫ π/2

0

(cos θ)2k sin θ g(θ) dθ. (3.25)

For the convenience of representation we assume that g(0) = 0. (If this should
not be the case we can arrange it by subtracting a suitable function from g(θ) —
see Example 3.8). The function g(θ) can be expanded in (0, π/2) as an odd-sine
series

g(θ) =
∞∑

k=0

αk sin(2k + 1)θ. (3.26)

This expansion is valid in the interval (−π/2, π/2). We now have to determine
the coefficients αk. Since

(cos θ)2k sin θ =
(eiθ + e−iθ

2

)2k eiθ − e−iθ

2i
,

expansion of the right hand side and collection of appropriate terms gives

22k(cos θ)2k sin θ = sin(2k + 1)θ + · · ·+
[(

2k

r

)
−

(
2k

r − 1

)]
sin[2(k − r) + 1]θ

+ · · ·+
[(

2k

k

)
−

(
2k

k − 1

)]
sin θ (3.27)

Substitution of (3.26) and (3.27) in (3.25) gives, because of the orthogonality of
the odd sines in (0, π/2) and

∫ π/2

0

[sin(2k + 1)θ]2 dθ =
π

4
,

that

σf̄ [(2k + 1)σ] = 2−2k π

4

{[(
2k

k

)
−

(
2k

k − 1

)]
α0 + · · ·

+
[(

2k

r

)
−

(
2k

r − 1

)]
αk−r + · · ·+ αk

}
.
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Thus with k = 0, 1, 2, · · · we get the triangular system of equations

4
π

σf̄(σ) = α0,

22 4
π

σf̄(3σ) = α0 + α1,

· · · · · · · · · (3.28)

22k 4
π

σf̄ [(2k + 1)σ] =
[(

2k

k

)
−

(
2k

k − 1

)]
α0 + · · ·

+
[(

2k

r

)
−

(
2k

r − 1

)]
αk−r + · · ·+ αk.

The αk are obtained from (3.28) by forward substitution and hence g(θ) can be
obtained from (3.26). In practice one would only compute the first N +1 terms
of (3.26), that is, the finite series

gN (θ) =
N∑

k=0

αk sin(2k + 1)θ. (3.29)

As N → ∞ the function gN (θ) tends to g(θ) with exact arithmetic. From
a knowledge of g(θ) we can determine f(t). Equation (3.26) can be written
directly in terms of functions of t for if x = cos θ and we define

Uk−1(x) =
sin kθ

sin θ
,

where Uk(x) is the Chebyshev polynomial of the second kind of degree k, then

sin θ = (1− e−2σt)1/2

and

f(t) = (1− e−2σt)1/2
∞∑

k=0

αkU2k(e−σt). (3.30)

Example 3.8 f̄(s) = 1/
√

s2 + 1.
We shall take σ = 1 as in Example 3.7. Before we can start to determine the
αk we must check that g(0) = 0 or, equivalently, f(0) = 0. By the initial value
theorem

f(0) = lim
s→∞

sf(s) = 1

so that a possible function we could employ to subtract from f(t) would be the
function 1. A more plausible function would be one having the same character-
istics at ∞. By the final value theorem

lim
t→∞

f(t) = lim
s→0

sf(s) = 0.

A function which takes the value 1 at t = 0 and tends to zero as t →∞ is e−t

and therefore we shall work with the function F (t) = f(t) − e−t as F (0) = 0
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k αk

0 0.26369654
1 0.07359870
2 -0.14824954
3 0.09850917
4 -0.07693976
5 0.05470060
6 -0.04226840
7 0.03102729
8 -0.02397057
9 0.01764179
10 -0.01340272

Table 3.3: Coefficients in the Chebyshev expansion when f̄(s) = 1/
√

s2 + 1.

and the corresponding G(0) = 0. Since F̄ (s) = f̄(s) − 1/(s + 1) the equations
for αk are, from equation (3.28),

4
π

(
1√
2
− 1

2

)
= α0,

22 4
π

(
1√
10
− 1

4

)
= α0 + α1,

24 4
π

(
1√
26
− 1

6

)
= 2α0 + 3α1 + α2,

26 4
π

(
1√
50
− 1

8

)
= 5α0 + 9α1 + 5α2 + α3, etc.

Solution of these equations yields Table 3.3 . Now the coefficients along the
main diagonal are all 1, so we do not have the same problem as in the previous
section of diagonal elements decreasing rapidly, but decimal digits can be lost in
the computation because of cancellation brought about by the large coefficients.

Lanczos [124] has a slightly different approach using the shifted Chebyshev
polynomials U∗

k (x).

3.2.3 Laguerre Polynomials

In this approach we attempt to approximate the function f(t) by an expansion
of the form

f(t) =
∞∑

k=0

αkφk(t), (3.31)

where
φk(t) = e−tLk(t), (3.32)
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and Lk(t) is the Laguerre polynomial of degree k which is defined by

Lk(t) = et dk

dtk

[
e−ttk

k!

]
. (3.33)

Now we know that the Laplace transform of φk(t) is given by

φ̄k(s) =
sk

(s + 1)k+1
,

so that the Laplace transform of equation (3.31) is

f̄(s) =
∞∑

k=0

αk
sk

(s + 1)k+1
. (3.34)

For small s the binomial expansion for sk/(s + 1)k+1 is

sk

(s + 1)k+1
= sk

∞∑
r=0

(
r + k

k

)
(−1)rsr. (3.35)

Expansion of f̄(s) about the origin gives

f̄(s) =
∞∑

k=0

βksk. (3.36)

Thus, combining equations (3.34), (3.35) and (3.36) and equating powers of s,
we have

β0 = α0,

β1 = α1 − α0,

· · · · · · · · · (3.37)

βk = αk −
(

k

1

)
αk−1 + · · ·+ (−1)kα0.

For this triangular system of equations we can obtain an explicit formula for
each αk, namely

αk = βk +
(

k

1

)
βk−1 + · · ·+

(
k

r

)
βk−r + · · ·+ β0. (3.38)

Clearly, if k has even moderate value, the coefficients in the above formula can
be quite substantial if all the βk are positive but, hopefully, since Lk(t) satisfies
the inequality

|Lk(t)| ≤ et/2, t ≥ 0,

this will not result in a divergent series.
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k αk

0 1.00000000
1 1.00000000
2 0.50000000
3 -0.50000000
4 -1.62500000
5 -2.12500000
6 -1.18750000
7 1.43750000
8 4.77343750
9 6.46093750
10 3.68359375

Table 3.4: Coefficients in the Laguerre expansion when f̄(s) = 1/
√

s2 + 1.

n σ = 0.5 σ = 1.0
15 0.2109 0.2155
20 0.2214 0.2185
25 0.2255 0.2339

Table 3.5: Estimation of J0(2) using Legendre expansion.

Example 3.9 f̄(s) = 1/
√

s2 + 1.
The first task is to determine the βk. By expanding (s2 + 1)−1/2 we have

(s2 + 1)−1/2 = 1− 1
2
s2 +

3
8
s4 − 5

16
s6 + · · ·+

(−1
4

)n (
2n

n

)
s2n + · · · .

Thus, from (3.37),

α0 = 1,

α1 = 1,

α2 = 1/2, etc.

we obtain Table 3.4 .

In the above we have outlined the method for determining the coefficients in the
various expansions but have not commented on their effectiveness. In Table 3.5
we have used the truncated series (3.22) to estimate the value of J0(2) = 0.22389
using two values of σ and various values of n the number of terms of the series
employed. Clearly this is not very efficient and we are not doing as well here as
we did in §3.1. Similar results are obtained when we expand in terms of other
orthogonal polynomials. However, if we use orthonormal Laguerre functions,
which was the approach adopted by Weeks [247], we are more successful.
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3.2.4 The method of Weeks

This method incorporates the ideas of Papoulis and Lanczos. We attempt to
obtain a series expansion for f(t) in terms of the orthonormal Laguerre functions

Φk(t) = e−t/2Lk(t), k = 0, 1, 2, · · · (3.39)

where Lk(t) is the Laguerre polynomial of degree k. Thus
∫ ∞

0

Φk(t)Φ`(t) =
{

0 if k 6= `
1 if k = `

(3.40)

Φk(0) = 1. (3.41)

Any function f(t) satisfying the conditions (1.2) and §2.5 can be approxi-
mated by a function fN (t) such that

fN (t) = ect
N∑

k=0

akΦk( t
T ), (3.42)

where T > 0 is a scale factor and

ak =
1
T

∫ ∞

0

e−ctf(t)Φk( t
T )dt. (3.43)

The function fN (t) approximates f(t) in the sense that, for any ε > 0, there
exists an integer N0 such that

∫ ∞

0

e−2ct|f(t)− fN (t)|2dt < ε (3.44)

whenever N > N0.
Now suppose f̄N (s) is the Laplace transform of fN (t), i.e.,

f̄N (s) =
∫ ∞

0

e−stfN (t)dt,

=
∫ ∞

0

e−(s−c)t
N∑

k=0

akΦk( t
T )dt,

=
N∑

k=0

ak

∫ ∞

0

e−(s−c)te−
1
2 t/T Lk( t

T )dt,

=
N∑

k=0

ak

(s− c− 1
2T )k

(s− c + 1
2T )k+1

(3.45)

On the line s = c in the complex plane f̄N (c + iω) converges in the mean to
f̄(c+ iw) with increasing N . This result is a consequence of Parseval’s theorem
(Chapter 2) in the form

∫ ∞

0

e−2ct|f(t)− fN (t)|2dt =
1
2π

∫ ∞

−∞
|f̄(c + iω)− f̄N (c + iω)|2dω. (3.46)
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For, since f(t) − fN (t) satisfies the required condition of being O(eγt) if c > γ
we have by comparison with (3.44) that given any ε > 0, ∃N such that

1
2π

∫ ∞

−∞
|f̄(c + iω)− f̄N (c + iω)|2dω < ε, (3.47)

whenever N > N0 and this establishes the result.
Whereas Papoulis determined the ak by a Taylor series expansion, Weeks finds a
trigonometric expansion of the Laplace transform. If s = c+iω then substitution
of (3.45) into (3.47) gives

1
2π

∫ ∞

−∞

∣∣∣∣∣f̄(c + iω)−
N∑

k=0

ak

(iω − 1
2T )k

(iω + 1
2T )k+1

∣∣∣∣∣

2

dω < ε, (3.48)

whenever N > N0. Next we make the change of variable

ω =
1

2T
cot 1

2θ,

and note the identities

i cos 1
2θ − sin 1

2θ

i cos 1
2θ + sin 1

2θ
= eiθ,

|i cos 1
2θ + sin 1

2θ|2 = 1,

to obtain

T

2π





(∫ 0−

−π

+
∫ π

0+

) ∣∣∣∣∣(
1

2T + i
2T cot 1

2θ)f̄(c + i
2T cot 1

2θ)−
N∑

k=0

akeikθ

∣∣∣∣∣

2


 dθ < ε,

(3.49)
whenever N > N0. The inequality (3.49) implies that

(
1

2T + i
2T cot 1

2θ
)
f̄(c + 1

2T cot 1
2θ) ≈

N∑

k=0

akeikθ, (3.50)

in the sense that the right hand side of (3.50) converges in the mean to the left
hand side as N increases. If

f̄(s) = G + iH, (3.51)

where G and H are real and we take the real part of equation (3.50) we have

A(θ) =
1

2T

(
G−H cot 1

2θ
) ≈

N∑

k=0

ak cos kθ. (3.52)
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The coefficients ak can then be approximated by trigonometric interpolation

a0 =
1

N + 1

N∑

j=0

A(θj), (3.53)

ak =
2

N + 1

N∑

j=0

A(θj) cos kθj , k > 0 (3.54)

where

θj =
(

2j + 1
N + 1

)
π

2
. (3.55)

We now consider some practicalities. From the analysis in Appendix 11.6, if xk

is the largest zero of the equation Lk(x) = 0 then xk satisfies the inequality

xk ≤ 4k − 6, k ≥ 4

(see Cohen [45]). Thus the function Φk(t) oscillates in the interval 0 < t <
4k − 6 and approaches zero monotonically for t > 4k − 6. Hence, intuitively,
one would only expect oscillatory functions to be representable by a linear com-
bination of the Φ’s in the interval (0, tmax) where

tmax

T
< 4N − 6.

Weeks states, on the basis of empirical evidence, that a satisfactory choice of
the parameter T is obtained by taking

T =
tmax

N
. (3.56)

With this choice of T , (3.42) gives a good approximation to f(t) in (0, tmax)
provided c is properly chosen and N is sufficiently large. If <s = γ0 marks the
position of the line through the right-most singularity then Weeks suggests a
suitable value of c is

c = γ0 + 1/tmax.

Once γ0 has been determined and a value of tmax assigned then a value of N has
to be chosen. Weeks [247] took values between 20 and 50. T now follows from
(3.56) and the ak can be estimated from (3.53) - (3.55). fN (t) is then readily
determined from (3.42) by noting that the Φk(t) satisfy the recurrence relations

Φ0(t) = e−
1
2 t,

Φ1(t) = (1− t)Φ0(t),
kΦk(t) = (2k − 1− t)Φk−1(t)− (k − 1)Φk−2(t), k > 1.

Weeks, op cit., also makes additional points relating to the computation of the
terms cos θj and A(θj).
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Subsequently, Weeks’s method has been investigated by Lyness and Giunta
[150] and has been modified by using the Cauchy integral representation for the
derivative. Thus if we write

f(t) = ect
∞∑

k=0

ake−bt/2Lk(bt), (3.57)

then b corresponds to 1/T in the Weeks method. If we define

ψ(z) =
b

1− z
f̄

(
b

1− z
− b

2
+ c

)
(3.58)

then ψ(z) is a regular function inside a circle |z| < R with R ≥ 1. Moreover,
the coefficients ak in (3.57) are exactly the coefficients in the Taylor expansion
of ψ(z), viz.,

ψ(z) =
∞∑

k=0

akzk. (3.59)

Hence

ak =
ψ(k)(0)

k!
=

1
2πi

∫

C

ψ(z)
zk+1

dz, (3.60)

where C could be any contour which includes the origin and does not contain
any singularity of ψ(z) but which we shall take to be a circle of radius r centre
the origin (r < R). Thus

ak =
1

2πi

∫

|z|=r

ψ(z)
zk+1

dz =
1

2πrk

∫ 2π

0

ψ(reiθ)e−ikθdθ, k ≥ 0. (3.61)

It is convenient to approximate the integral by means of an m-point trapezium
rule where m is even. That is, by

ak(Tm, r) =
1

rkm

m∑

j=1

ψ(re2πij/m)e−2πikj/m. (3.62)

Now ψ(z) is real when z is real and ψ(z̄) = ψ(z) so that the sum in (3.62)
requires only m/2 independent evaluations of (both the real and imaginary
parts of) ψ(z). Thus we obtain the Lyness and Giunta modification to Weeks’s
method

ak(Tm, r) =
2

rkm

m/2∑

j=1

<(ψ(re2πij/m)) cos(2πkj/m)

+
2

rkm

m/2∑

j=1

=(ψ(re2πij/m)) sin(2πkj/m), (3.63)

for values of k from 0 to m− 1. Here m− 1 corresponds to the N of Weeks and
the function fN (t) would be our approximation to f(t).
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Figure 3.1: The transformation (3.64), r > 1.

The method we have described depends crucially on the choice of the free
parameters b and c. The parameters have to a large extent been chosen by rule
of thumb. Giunta et al [97] look at the problem of finding the optimal b for
a given c for a restricted class of transforms A. However, they did not engage
in determining c and relied on a priori knowledge of the singularities. A FOR-
TRAN program for Weeks’s method based on the paper by Garbow et al [91]
can be found at the website
www.cf.ac.uk/maths/cohen/programs/inverselaplacetransform/ .

Weideman [248] presents two methods for determining b and c. The first as-
sumes that the theory of Giunta et al is applicable while the second is more
general.
Weideman notes that the transformation

w = c +
b

1− z
− 1

2b, (3.64)

which occurs in (3.59), maps circles of radius r centered at the origin of the
z-plane to circles with radius 2b′r/|r2 − 1| and centre c− b′(r2 + 1)/(r2 − 1) in
the w-plane, where b′ = b/2. In particular the interiors of concentric circles in
the z-plane with r > 1 are mapped into the exteriors of circles in the w-plane
and vice versa. If r < 1 then the image circles lie in the half-plane <w > c
— see Figure 3.1. As Weideman points out the image circles corresponding to
radii r and 1/r are mirror images in the line <w = c and this line corresponds
to the image of the unit circle. This informs us that the radius of convergence
of the Maclaurin series (3.59) satisfies R ≥ 1.
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Weideman applies the Cauchy estimate to the integral (3.60) to show that

|ak| ≤ κ(r)
rk

, k = 0, 1, 2, · · · (3.65)

where κ(r) = max|z|=r |ψ(z)|, to infer that for the class of transforms in A
the coefficients ak decay exponentially. An example of a transform not in A is
f̄(s) = 1/

√
s. Lyness and Giunta chose r < 1 in (3.61) but Weideman takes

r = 1 and instead of using the trapezium rule which would require θ = 0 and
θ = 2π, i.e. z = 1 which corresponds to w = ∞ being involved in the summation,
he uses the equally accurate mid-point rule which avoids the singular point.
Thus ãk, the approximation to ak is given by

ãk =
e−ikh/2

2N

N−1∑

j=−N

ψ(eiθj+1/2)e−ikθj , k = 0, · · · , N − 1, (3.66)

where θj = jh, h = π/N . Weideman computed this as a FFT (fast Fourier
transform) of length 2N and notes that only the ak, 0 ≤ k ≤ N − 1, are used
in evaluating (3.57).
The actual expression employed in estimating f(t) is

f̃(t) = ect
N−1∑

k=0

ãk(1 + εk)e−bt/2Lk(bt), (3.67)

where εk denotes the relative error in the floating point representation of the
computed coefficients , i.e., fl(ãk) = (ãk)(1+εk). Subtracting (3.67) from (3.57),
assuming

∑∞
k=0 |ak| < ∞, we obtain

|f(t)− f̃(t)| ≤ ect(T + D + C),

where

T =
∞∑

k=N

|ak|, D =
N−1∑

k=0

|ak − ãk|, C = ε
N−1∑

k=0

|ãk|,

are respectively the truncation, discretization and conditioning error bounds. ε
is the machine round-off unit so that for each k, |εk| ≤ ε. Since it can be shown
that

ãk − ak =
∞∑

j=1

(−1)jak+2jN , k = 0, 1, · · · , N − 1

this yields

D =
N−1∑

k=0

|ak − ãk| ≤
N−1∑

k=0

∞∑

j=1

|ak+2jN |.

The dominant term on the right hand side is |a2N | and thus D is negligible
compared with T which has leading term |aN |, because Weideman opts for
the FFT method for evaluating the summation. This is not the case in the
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Lyness-Giunta formulation where the truncation and discretization errors are
of comparable magnitude. Thus basically the error in f(t) will be minimized if
we can determine the optimal c and b (or b′) to minimize

E = ect

( ∞∑

k=N

|ak|+ ε
N−1∑

k=0

|ak|
)

. (3.68)

Here the tilde has been dropped since the algorithms cannot distinguish between
true and computed coefficients.
For transforms in the class A we can employ the Cauchy estimate (3.65) to
bound the truncation and conditioning errors giving

T =
∞∑

k=N

|ak| ≤ κ(r)
rN (r − 1)

, C = ε
N−1∑

k=0

|ak| ≤ ε
rκ(r)
r − 1

, (3.69)

which is valid for each r ∈ (1, R). Inserting these two bounds into (3.68) we have
an error estimate in terms of r which we can try and minimize as a function of
c and b (or b′).
Weideman remarks that while he has had some success with the above approach
for estimating the optimal parameters the Cauchy estimates are fine for ak when
k is large but not so effective for intermediate values. He adds that provided r
is selected judiciously the bound for T in (3.69) is tight but this might not be
the case for C, whatever the choice of r.
To obtain his first algorithm he assumes that the transform belongs to the class
A and has finitely many singularities at s1, s2, · · · , sm which may be either poles
or branch points and is assumed to be real or occur as complex conjugate pairs.
It follows from (3.69), or the work of Giunta et al, that T is minimized if R is
maximized. For given c > γ the optimal b′ is thus given by

R(b′opt) = max
b′>0

R(b′). (3.70)

Giunta et al gave the following geometric description of b′opt. For fixed c > γ

consider the family of circles, parameterized by b′ which contain all the singu-
larities of f̄(w) — see Figs. 3.1 and 3.2. If we imagine two tangent lines drawn
from the point w = c to each circle and we select the circle in this family which
minimizes the angle between the two tangent lines then the optimal value of b′

is the length of the tangent segment from the point w = c to the optimal circle.
Two cases have to be considered:-
Case A. The optimal circle is determined by a complex conjugate pair of sin-
gularities sj and s̄j and only occurs if the tangents to the circle through w = c
pass through w = sj and w = s̄j .
Case B. The optimal circle passes through two distinct pairs (sj , s̄j) and (sk, s̄k)
which includes the case where sj and sk are real.
Weideman now determines the critical curve in the (c, b′) plane on which the
optimal point is located.



3.2. EXPANSION IN TERMS OF ORTHOGONAL POLYNOMIALS 65

Q
Q

Q
Q

Q
Q

QQ

´
´

´
´

´
´

´́

q -

6

×
×
×

×

×

=w

<w

w = c

bopt

Case A

Q
Q

Q
Q

Q
Q

Q
QQ

´
´

´
´

´
´

´
´́

-

6

q×
×

×
× ×

=w

<w

w = c

bopt

Case B

Figure 3.2: Geometric significance of bopt.

If Case A appertains he denotes the critical singularities which determine the
optimal circle by s = α± iβ and finds

R =
∣∣∣∣
s− c− b′

s− c + b′

∣∣∣∣ =
∣∣∣∣
(α− c− b′)2 + β2

(α− c + b′)2 + β2

∣∣∣∣
1/2

.

To satisfy (3.70) we require ∂R/∂b′ = 0 which yields the hyperbola

b′2 − (c− α)2 = β2. (3.71)

Likewise for Case B if the two critical singularities are s1 = α1 + iβ1 and
s2 = α2 + iβ2, where α1 6= α2, both singularities correspond to the same value
of R and thus ∣∣∣∣

s1 − c− b′

s1 − c + b′

∣∣∣∣ =
∣∣∣∣
s2 − c− b′

s2 − c + b′

∣∣∣∣ .

This also yields a hyperbola

b′2 − c2 +
|s2|2 − |s1|2

α2 − α1
c +

α2|s1|2 − α1|s2|2
α2 − α1

= 0. (3.72)

This provides the basis for the algorithms. Weideman replaces E in (3.68) by

E(c, b′) = ect

(
2N−1∑

k=N

|ak|+ ε
N−1∑

k=0

|ak|
)

, (3.73)

which can be computed by a FFT of length 4N . For the cases where the Weeks
method is suitable this truncation is fairly inconsequential because of the rapid
decay of the ak. We have
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ALGORITHM 1(f̄ ∈ A) Given t,N and an interval [c0, cmax] that is likely
to contain the optimal c and b′ defined by (3.71) or (3.72) the algorithm
solves

c = {c ∈ [c0, cmax] | E(c, b′) = a minimum}. (3.74)

When f̄ /∈ A the above theory does not apply and the optimal curve for b′

has to be determined numerically. A good approximation to this curve is
determined by the value of b′ that minimizes the truncation error estimate
for any c > c0. We now compute b′ from

b′(c) = {b′ > 0 | T (c, b′) = a minimum}

where

T (c, b′) =
2N−1∑

k=N

|ak|.

ALGORITHM 2( f̄ /∈ A) Given t,N and a rectangle [c0, cmax]× [0, b′max]
that is likely to contain the optimal (c, b′) the algorithm solves the nested
problem

c = {c ∈ [c0, cmax] | E(c, b′) = a minimum}, (3.75)

where
b′(c) = {b′ ∈ [0, b′max] | T (c, b′) = a minimum}. (3.76)

Weideman found that Brent’s algorithm [23], which combines a golden section
search with successive parabolic interpolation, worked well as a minimization
technique for (3.74) - (3.76) but that the quantities minimized were ln E and
ln T because of the smallness of E and T . He points out that the two algorithms
assume a fixed value of t. If f(t) is to be computed at many t values, t ∈ [0, tmax],
then if N is large the optimal values (c, b′) are virtually independent of t and
the optimal point is determined by a balance between the quantities T and C
(both independent of t). For intermediate N one should take t = tmax which
should correspond to the largest absolute error in the Weeks expansion. Details
of numerical tests are available in Weideman’s paper and a MATLAB file of his
paper is available via electronic mail from weideman@na-net.ornl.gov.

3.3 Multi-dimensional Laplace transform

inversion

A number of authors have attempted to invert multi-dimensional Laplace trans-
forms and, in particular, two dimensional Laplace transforms. Essentially, their
methods are a concatenation of 1-dimensional methods. Included among them
are the methods of Moorthy [157] and Abate et al [1] who have extended the
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Weeks method. The latter use an expansion in terms of Laguerre polynomials
Φk(t) which takes the form

f(t1, t2) =
∞∑

m=0

∞∑
n=0

qm,nΦm(t1)Φn(t2), t1, t2 ≥ 0, (3.77)

where, as earlier,
Φk(t) = e−t/2Lk(t), t ≥ 0,

and

Q(z1, z2) ≡
∞∑

m=0

∞∑
n=0

qm,nzm
1 zn

2

= (1− z1)−1(1− z2)−1f̄

(
1 + z1

2(1− z1)
,

1 + z2

2(1− z2)

)
,

(3.78)

is the Laguerre generating function and zi = (2si−1)/(2si +1), i = 1, 2 and the
Laplace transform exists for <s1, <s2 > 0. The functions Φm(t1) and Φn(t2)
are computed from the one-dimensional recurrence relation

Φk(t) =
(

2k − 1− t

k

)
Φk−1(t)−

(
k − 1

k

)
Φk−2(t), (3.79)

where Φ0(t) = e−t/2 and Φ1(t) = (1 − t)e−t/2. The Laguerre functions Φk(t)
tend to zero slowly as k → ∞ and hence, for an effective algorithm, we must
have qm,n decaying at an appreciable rate as either m or n gets large. If this
does not happen then Abate et al use scaling or summation acceleration.
From (3.78) the computation of qm,n requires the double inversion of the bivari-
ate generating function Q(z1, z2) and this was achieved by applying a Fourier
series based inversion algorithm given in Choudhury et al [34]. By modifying
equation (3.5) in that paper Abate et al obtain the approximation

qm,n ≈ q̄m,n ≡ 1
m1rm

1

{<[Q̂(r1, n)] + (−1)m<[Q̂(−r1, n)]}

+
(m1/2)−1∑

k=1

<[e(−2πikm/m1)Q̂(r1e
2πik/m1 , n)],

(3.80)

and

Q̂(z1, n) =
1

m2rn
2

(m2/2)−1∑

k=−m2/2

e(−2πikn/m2)Q(z1, r2e
2πik/m2). (3.81)

The resulting aliasing error, E, is given by

E = q̄m,n − qm,n =
∞∑

j=0
j+k>0

∞∑

k=0

qm+jm1,n+km2r
jm1
1 rkm2

2 .
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If |qm+jm1,n+km2 | ≤ C for each j, k and r1, r2 are chosen so that

r1 = 10−A1/m1 , r2 = 10−A2/m2

then it can be shown that

|E| ≤ C(10−A1 + 10−A2)
(1− 10−A1)(1− 10−A2)

≈ C(10−A1 + 10−A2).

The aliasing error can thus be controlled by choosing A1 and A2 large, provided
C is not large. Typical values chosen by Abate et al were A1 = 11 and A2 = 13.
In order to effect the inversion using the FFT, m1 and m2 were chosen so that

m1 = 2`1M, m2 = 2`2N

and, for example, M = 128, `1 = 1, N = 64, `2 = 2 giving m1 = m2 = 256.
Next (3.80) and (3.81) are rewritten as

q̄m,n =
1

m1rm
1

m1−1∑

k=0

e−2πikm/m1Q̂(r1e
2πik/m1 , n), (3.82)

Q̂(z1, n) =
1

m2rn
2

m2−1∑

k=0

e−2πikn/m2Q(z1, r2e
2πik/m2). (3.83)

If we define the (m1 ×m2) dimensional sequences {am,n} and {bm,n} over 0 ≤
m ≤ m1 − 1 and 0 ≤ n ≤ m2 − 1 by

am,n = q̄m,nrm
1 rn

2 , (3.84)

bm,n = Q(r1e
2πim/m1 , r2e

2πin/m2), (3.85)

and note that am,n and q̄m,n are only defined in the range 0 ≤ m ≤ M − 1, 0 ≤
n ≤ N − 1 we can extend the definition over the full range by means of the
inverse discrete Fourier transform (IDFT) relation

am,n =
1

m1m2

m1−1∑

j=0

m2−1∑

k=0

exp
(
−2πijm

m1
− 2πikn

m2

)
bj,k, (3.86)

which follows from (3.82) and (3.83).
Equation (3.86) implies that {bm,n} is the two-dimensional DFT of {am,n} and
conversely {am,n} is the two-dimensional IDFT of {bm,n}. First the {bm,n}
are computed from (3.85) and stored. Then the am,n are computed using any
standard two-dimensional FFT algorithm. Finally, the q̄m,n are obtained from
(3.84). Fuller details of the procedure can be found in [1].

Moorthy’s approach is to extend the one dimensional methods of Weeks and
Piessens and Branders [182] but to use an expansion in terms of the generalised
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Laguerre polynomials L
(α)
n (t). He assumes that we can express f(t1, t2) in the

form

f(t1, t2) = tα1
1 tα2

2 ec1t1+c2t2

∞∑
m=0

∞∑
n=0

qm,nLα1
m (bt1)Lα2

n (bt2), (3.87)

where −1 < α1, α2 < 1 and b > 0. If f̄(s1, s2) is the Laplace transform of
f(t1, t2) where <s1 > c1 and <s2 > c2 then it follows from (3.87) that

f̄(s1, s2) =
∞∑

m=0

∞∑
n=0

qm,n
Γ(m + α1 + 1)Γ(n + α2 + 1)

m!n!

× (s1 − c1 − b)m

(s1 − c1)m+1

(s2 − c2 − b)n

(s2 − c2)n+1
.

(3.88)

If we set

z1 =
(s1 − c1 − b)

(s1 − c1)
, z2 =

(s2 − c2 − b)
(s2 − c2)

,

then we can establish an analogous generating function expansion to (3.78)
namely

Q(z1, z2) =
(

b

1− z1

)α1+1 (
b

1− z2

)α2+1

× f̄

(
b

1− z1
+ c1,

b

1− z2
+ c2

)

=
∞∑

m=0

∞∑
n=0

Qm,nzm
1 zn

2 ,

(3.89)

where

Qm,n = qm,n
Γ(m + α1 + 1)Γ(n + α2 + 1)

m!n!
.

Moorthy restricts Q to the boundary of the unit polydisc

D = {(z1, z2); |z1| < 1, |z2| < 1},

by setting

z1 = eiθ1 , −π ≤ θ1 ≤ π,

z2 = eiθ2 , −π ≤ θ2 ≤ π.

On the assumption that f is real it follows that (3.89) can be written as

Q(θ1, θ2) =
∞∑

m=0

∞∑
n=0

Qm,nei(mθ1+nθ2),
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from which we deduce that

Q00 = 1
4π2

∫ π

−π

∫ π

−π
<Q(θ1, θ2)dθ1dθ2,

Qm,n = 1
2π2

∫ π

−π

∫ π

−π
<Q(θ1, θ2) cos(mθ1 + nθ2)dθ1dθ2


 . (3.90)

Defining Q1 and Q2 by

Q1(θ1, θ2) = <[Q(θ1, θ2)] + <[Q(θ1,−θ2)]
Q2(θ1, θ2) = <[Q(θ1, θ2)]−<[Q(θ1,−θ2)]

and applying the midpoint quadrature rule we obtain

q00 =
1

2L2Γ(α1 + 1)Γ(α2 + 1)

L∑

j=1

L∑

k=1

Q1(λj , µk), (3.91)

and

qm,n =
1

L2Γ(m + α1 + 1)Γ(n + α2 + 1)

×
L∑

j=1

L∑

k=1

[Q1(λj , µk) cos(mλj) cos(nµk)−Q2(λj , µk) sin(mλj) sin(nµk)],

(3.92)

where m, n = 0, 1, · · · , N − 1; (m,n) 6= (0, 0) and

λj =
(2j − 1)π

2L
, µk =

(2k − 1)π
2L

.

Full details about the choice of parameters, the method of summation of the
truncated series (3.92) and an error analysis can be found in Moorthy’s paper.



Chapter 4

Quadrature Methods

4.1 Interpolation and Gaussian type Formulae

It is not surprising that a number of methods to find the Inverse Laplace trans-
form have, as their basis, the approximation of the Bromwich inversion integral
as this provides an explicit solution for f(t) if the integral can be evaluated
exactly. Salzer [201] in a series of papers proposed several such methods. He
assumes

f̄(s) ≈
n∑

r=1

βr

sr
, βr a constant (4.1)

— the absence of the constant term implying that f̄(s) → 0 as s → ∞ and,
effectively, that f(t) is a polynomial of degree n in t. Salzer evaluates f̄(s) for
s = k, k = 1, 2, · · · , n and determines the Lagrange interpolation polynomial
pn(1/s) which approximates to f̄(s) at s = k, k = 1, 2, · · · , n and s = ∞. By
this means the βr are determined which are linear combinations of the f̄(k).
Using the known relationship

1
2πi

∫ c+i∞

c−i∞

es

s

(
1
s

)r

ds =
1
r!

, (4.2)

Salzer determines, for given n, the weights αk(t) such that

1
2πi

∫ c+i∞

c−i∞
estf̄(s)ds ≈

n∑

k=1

αk(t)f̄(k). (4.3)

Additionally, he indicates how one can estimate the error in

1
2πi

∫ c+i∞

c−i∞
ept

[
pn

(
1
s

)
− f̄(s)

]
ds.

The interested reader is referred to Salzer for more details as well as tables of
the αk(t). Shirtliffe and Stephenson [209] give a computer adaptation of this
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method and report on their experiments to try and find the optimum value of
n.
The advantage of using the previous method is that it involves only real calcu-
lations. Now that computers are available to ease the burden of computation
it is very easy to perform arithmetic involving complex numbers. Salzer notes
that if we write st = u we have

1
2πi

∫ c+i∞

c−i∞
estf̄(s)ds =

1
2πit

∫ c′+i∞

c′−i∞
euf̄

(u

t

)
du, (4.4)

f̄(u/t) having the same polynomial form in 1/u as f̄(s) in 1/s, that is, not
having a constant term, but now involving the parameter t. eu/u is a weight
function for which we can determine orthogonal polynomials pn(1/u) such that

∫ c′+i∞

c′−i∞

eu

u
pn

(
1
u

)
1

um
du = 0, m = 0, 1, · · · , n− 1 (4.5)

and hence obtain a Gauss-type quadrature formula which will be accurate for
all polynomials of degree ≤ 2n in (1/u), whereas the previous method was
only accurate for polynomials of degree n. To see how (4.5) arises let q2n(1/s)
be any arbitrary (2n)-th degree polynomial in the variable 1/s which vanishes
at 1/s = 0. Consider n distinct points 1/si, i = 1, 2, · · · , n, other than
1/s = 0, and construct the (n + 1)-point Lagrange interpolation polynomial
approximation to q2n(1/s) which is exact at the points 1/si, i = 1, · · · , n and
1/s = 0. Call this polynomial (which is of degree n) L(n+1)(1/s). Then

L(n+1)

(
1
s

)
=

n+1∑

i=1

L
(n+1)
i

(
1
s

)
q2n

(
1
si

)
, (4.6)

where 1/sn+1 = 0 and

L
(n+1)
i

(
1
s

)
=

n+1∏

k=1

′
(

1
s
− 1

sk

)
/

n+1∏

k=1

′
(

1
si
− 1

sk

)
, (4.7)

where the prime indicates the absence of k = i in the product. It follows that
q2n(1/s) − L(n+1)(1/s) vanishes at 1/s = 0 and 1/si, i = 1, 2, · · · , n and thus
has the factor

1
s
pn

(
1
s

)
=

1
s

n∏

i=1

(
1
s
− 1

si

)
.

Writing
q2n(1/s) = L(n+1)(1/s) + (1/s)pn(1/s)rn−1(1/s),

where rn−1(1/s) is a polynomial of degree n− 1 in 1/s, we have

1
2πi

∫ c′+i∞

c′−i∞
esq2n

(
1
s

)
ds =

1
2πi

∫ c′+i∞

c′−i∞
esL(n+1)

(
1
s

)
ds

+
1

2πi

∫ c′+i∞

c′−i∞
es 1

s
pn

(
1
s

)
rn−1

(
1
s

)
ds. (4.8)
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Thus if the second term on the right of (4.8) always vanishes, which will be the
case when (4.5) holds, then (4.8) will represent an n-point quadrature formula
which is exact for any (2n)-th degree polynomial in 1/s and yielding the formula

1
2πi

∫ c′+i∞

c′−i∞
esq2n

(
1
s

)
ds =

n∑

i=1

Aiq2n

(
1
si

)
, (4.9)

where the Christoffel numbers are given by

Ai =
1

2πi

∫ c′+i∞

c′−i∞
esL(n+1)

(
1
s

)
ds. (4.10)

In order for (4.10) to be computed we need to know the value of the si. If we
write

pn

(
1
s

)
=

(
1
s

)n

+ bn−1

(
1
s

)n−1

+ bn−2

(
1
s

)n−2

+ · · ·+ b1

(
1
s

)
+ b0,

and evaluate (4.5) using (4.2) we see that the bi, i = 0, · · · , n − 1 satisfy the
system of linear equations

1
n!

+
bn−1

(n− 1)!
+

bn−2

(n− 2)!
+ · · ·+ b1

1!
+

b0

0!
= 0,

1
(n + 1)!

+
bn−1

n!
+

bn−2

(n− 1)!
+ · · ·+ b1

2!
+

b0

1!
= 0,

. . . . . .

1
(2n− 1)!

+
bn−1

(2n− 2)!
+

bn−2

(2n− 3)!
+ · · ·+ b1

n!
+

b0

(n− 1)!
= 0.

We can thus determine the roots of the polynomial equation pn(1/s) = 0 by
using a polynomial solver (or alternatively find the eigenvalues of the companion
matrix - see Appendix 11.7). An alternative procedure is to use the fact that
orthogonal polynomials satisfy 3-term recurrence relationships and associate this
with a tridiagonal matrix (see Cohen [45]) whose eigenvalues can be determined
using a standard technique such as the QR method.
Salzer shows that if we write

P1(x) = p1(x) (= x− 1); P2(x) = 6x2 − 4x + 1
Pn(x) = (4n− 2)(4n− 6) · · · 6pn(x), n ≥ 2

then Pn(x) satisfies the recurrence relation

Pn+1(x) =
[
(4n + 2)x +

2
2n− 1

]
Pn(x) +

2n + 1
2n− 1

Pn−1(x), n ≥ 2. (4.11)
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Clearly, the roots of Pn(x) and pn(x) are identical and if they are x1, · · · , xn

then si = 1/xi, i = 1, · · · , n.
Another way of looking at the problem of generating the abscissae and weights
in the Gaussian n-point quadrature formula

1
2πi

∫ c+i∞

c−i∞
estf̄(s)ds ≈

n∑

k=1

αk(t)f̄(sk), (4.12)

has been provided by Zakian [262], [263]. He shows that the polynomial pn(x) is
the denominator in the [n− 1/n] Padé approximant (see §11.5) to the function
e1/x. Thus when n = 2, the polynomial P2(x) = 6x2 − 4x + 1, given previously,
is the [1/2] Padé approximant. The weights are related to the residues of the
[n− 1/n] Padé approximant.
Piessens [169], [172] extended this idea to the case where

sν f̄(s) '
n−1∑

0

βr

sr
, ν > 0, (4.13)

and obtained Gaussian n-point formulae for f̄(s) having this behaviour. He
showed that the abscissae and weights of the Gauss quadrature formula, when
f̄(s) is defined by (4.13), are connected with the [n − 1/n] Padé approximants
of the power series

∞∑

i=k

1
xkΓ(ν + k)

. (4.14)

Moreover, he showed that the real parts of the abscissae are all positive. For
a detailed summary of these developments see [216], pp 439 et seq. where an
additional quadrature method derived from the Sidi S-transformation applied
to the series (4.14) can be found.
It is important to know the exact value of ν to obtain satisfactory results. For
example with

f̄(s) = (s2 + 1)−1/2,

ν = 1 and thus we have exactly the Salzer case. A 12-point formula in this case
gives results with almost 10 decimal place accuracy for 1 ≤ t ≤ 8 but only 3
decimal place accuracy is achieved for t = 16. For

f̄(s) = s−1/2 exp(−s−1/2),

we require ν = 1/2 and results of almost 12 decimal place accuracy were ob-
tained for 1 ≤ t ≤ 100. But the case f̄(s) = s ln s/(s2 + 1) does not fit into
the pattern (4.13) and Piessens had to give a special treatment for this type of
logarithmic behaviour.
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4.2 Evaluation of Trigonometric Integrals

Schmittroth [206] described a numerical method for inverting Laplace trans-
forms which is based on a procedure of Hurwitz and Zweifel [113] for evaluating
trigonometric integrals. Schmittroth assumes that all singularities of f(s) lie in
=s < 0, and hence we can take c = 0 in the inversion formula, i.e.

f(t) =
1
2π

∫ ∞

−∞
f̄(iω)eiωtdω, t > 0. (4.15)

If we write φ(ω) = <f̄(iω) and ψ(ω) = −=f̄(iω) then, as we can assume that
f(s̄) = f(s), where the bar denotes complex conjugation, it follows that φ(ω) is
an even function and ψ(ω) is an odd function. Moreover, we can deduce from
Chapter 2 that

f(t) =
2
π

∫ ∞

0

φ(ω) cos tωdω, (4.16)

or

f(t) =
2
π

∫ ∞

0

ψ(ω) sin tωdω. (4.17)

To evaluate the above integrals Hurwitz and Zweifel made the transformation
y = ωt/π in (4.16) and u = (ωt/π) − 1

2 in (4.17). For the derivation of the
method they extend the definition of the functions φ and ψ to negative values
of ω by requiring φ to be even and ψ to be odd. (This is unnecessary in our case
because of the way the functions have been derived). If we just concentrate on
the sine integral (4.17) we see that it can be written as

f(t) =
1
t

∫ 1/2

−1/2

cos πu g(u, t)du, (4.18)

where

g(u, t) =
∞∑

n=−∞
(−1)nψ

(π

t
[u + n + 1

2 ]
)

. (4.19)

The function g(u, t) has the following properties

(a) g(u, t) = g(−u, t),
(b) g( 1

2 , t) = g(− 1
2 , t) = 0,

(c) g(u + n, t) = (−1)ng(u, t),
(d) g is regular, − 1

2 ≤ u ≤ 1
2 if ψ(ω) is regular for −∞ < ω < ∞.

Because of these properties g can be expanded as a Fourier series of the form

g(u, t) =
∞∑

n=0

an(t) cos(2n + 1)πu, (4.20)
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and, since cos nθ is a polynomial of degree n in cos θ, we have

g(u, t) = cosπu
∞∑

n=0

αn(t) cos2n πu. (4.21)

If we treat the cosine integral (4.16) similarly we arrive at a function h(y, t)
which has a similar expansion to the function g in (4.21).
Substitution of (4.21) in (4.18) gives

f(t) =
1
t

∫ 1/2

−1/2

cos2 πu
∞∑

n=0

αn(t) cos2n πu, (4.22)

The function w(u) = cos2 πu occurring in the integrand is clearly a positive
weight function and Hurwitz and Zweifel establish a Gaussian quadrature for-
mula by first determining the set of polynomials pn(cos πu) which are orthogonal
with respect to the weight function w(u) over the interval [− 1

2 , 1
2 ]. It turns out

that

pn(cos πu) = T2n+1(cos πu)/ cosπu,

= cos(2n + 1)πu/ cos πu, (4.23)

where the polynomial Tn(x) is the Chebyshev polynomial of the first kind of
degree n. The 2N -point Gaussian quadrature formula is

∫ 1/2

−1/2

cosπug(u, t)du =
N∑

j=1

2W
(N)
j

cos πu
(N)
j

g(u(N)
j , t), (4.24)

where the u
(N)
j are the zeros of pN (cos πu) = 0, i.e.,

u
(N)
j =

2j − 1
2(2N + 1)

, j = 1, 2, · · · , N, (4.25)

and the Wj are the Christoffel numbers . These may be determined from equa-
tion (11.25) in Appendix 11.3 or by solution of the N simultaneous equations

N∑

j=1

cos2k−2

(
(2j − 1)π
2(2N + 1)

)
W

(N)
j =

1
2
√

π

Γ(k + 1
2 )

Γ(k + 1)
, k = 1, 2, · · · , N. (4.26)

Then f(t) can be computed from

f(t) =
2ect

t

∞∑
n=0

In(t), (4.27)

where

In(t) = (−1)n

∫ 1/2

−1/2

ψ
(π

t
[u + n + 1

2 ]
)

. (4.28)
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In(t) is computed using the N -point formula of Hurwitz and Zweifel. If S
(0)
m

denotes
∑m

n=0 In then Schmittroth used Hutton’s averaging procedure (§11.4)

S(k)
m = (S(k−1)

m + S
(k−1)
m+1 )/2, k = 1, 2, · · · (4.29)

to speed up convergence. While this procedure has some merit a better approach
would be to use some other extrapolation technique after ensuring that N is
chosen sufficiently large to obtain accurate results. It is worth noting that the
method becomes increasingly accurate for fixed N as t increases and thus is
more reliable for t > tmin, for some value tmin dependent on N, while other
methods such as FFT are more reliable for t < tmax.

4.3 Extrapolation Methods

If we make the substitution s = c + ix in the Bromwich integral we have

f(t) =
ect

2π

∫ ∞

−∞
eixtf̄(c + ix)dx. (4.30)

One approach to evaluating infinite integrals of this kind is by convergence
acceleration . Methods which have enjoyed some success are the confluent
ε-algorithm of Wynn [257] and the G-transformation of Gray, Atchison and
McWilliams [105]. In their original form there were some computational dif-
ficulties associated with these methods as the former requires computation of
high order derivatives and the latter computation of high order determinants.
However, it has now been shown that the G-transformation can be implemented
efficiently (without computing high order determinants) by the rs-algorithm of
Pye and Atchison [191] or through the FS/qd-algorithm of Sidi [216], the latter
being the more efficient of the two. Despite this improvement in computing
the G-transformation it is more (computationally) expensive than the Levin
P-transformation and the Sidi mW-transformation.

4.3.1 The P -transformation of Levin

The Levin P-transformation [127] has a similar derivation to the Levin t-transfor-

f(t) =
ect

2π

[∫ 0

−∞
+

∫ ∞

0

]
eixtf̄(c + ix)dx, (4.31)

which leads to consideration of a Fourier integral of the form
∫∞
0

g(x)eiωxdx. If

xνg(x) =
∞∑

k=0

βk

xk
, ν > 0,

mation for series. (4.30) can be written in the form
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then Levin showed that one can obtain an asymptotic expansion for
∫∞

u
g(x)eiωxdx

of the form ∫ ∞

u

g(x)eiωxdx ∼ b(u)eiωu
∞∑

k=0

γk

uk
.

On the above assumption if we call A =
∫∞
0

g(x)eiωxdx and let A(u) =∫ u

0
g(x)eiωxdx be its finite part then truncation of the asymptotic expansion

at the term u−k gives

A−A(u) ≡
∫ ∞

u

g(x)eiωxdx ≈ b(u)eiωu
k−1∑

j=0

γj

uj
. (4.32)

Levin demanded that the approximation P to A obeyed the relationship (4.32)
exactly for k + 1 equidistant values of u, i.e.,

P −A(u + n∆u) = b(u + n∆u)eiω(u+n∆u)
k−1∑

j=0

γj

(u + n∆u)j
, n = 0, 1, · · · , k

(4.33)
This gives k + 1 linear equations in the k + 1 unknowns P, γ0, γ1, · · · , γk−1

which are similar to the equations defining the t-transformation (see Appendix
11.4). If we relate this to the Bromwich integral (4.31) Levin obtained the
approximation Pk to f(t) given by

Pk =
ect

π
<




∑k
j=0(−1)j

(
k
j

)
(j + 1)k−1

[
Ij+1(t)e−i(j+1)t

f̄(c + i(j + 1))

]

∑k
j=0(−1)j

(
k
j

)
(j + 1)k−1

[
e−i(j+1)t

f̄(c + i(j + 1))

]


 (4.34)

where Ij+1(t) = A(j + 1) =
∫ j+1

0
eixtf̄(c + ix)dx. In practice these quantities

Ij+1(t) must be evaluated by some quadrature formula and Levin used a Gauss-
Legendre quadrature formula which was of sufficiently high order to ensure 14
correct significant digits for the integral.

4.3.2 The Sidi mW-Transformation for the Bromwich
integral

The Sidi mW-transformation described in [216], Chapter 11 can be summarized
as follows:
Sidi writes the Bromwich integral in the form

f(t) =
ect

2π

[∫ ∞

0

eiωtf̄(c + iω)dω +
∫ ∞

0

e−iωtf̄(c− iω)dω

]
(4.35)

=
ect

2π
[u+(t) + u−(t)], (4.36)
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where

u±(t) =
∫ ∞

0

e±iωtf̄(c± iω)dω, (4.37)

and approximates the integrals u±(t) by the mW-transformation. When the
Laplace transform of f(t) can be expressed in the form

f̄(s) = exp(−st0)g(s),

where g(s) has an asymptotic expansion of the form

g(s) ∼
∞∑

i=0

αis
δ−i as s →∞.

Sidi then takes the following steps:-

1. Set
ω` = (` + 1)π/(t− t0), ` = 0, 1, · · · . (4.38)

2. Compute the integrals

ψ±(ω`) =
∫ ω`+1

ω`

e±iωtf̄(c± iω)dω, ` = 0, 1, · · · , (4.39)

and

V±(ω`) =
∫ ω`

0

e±iωtf̄(c± iω)dω =
`−1∑

k=0

ψ±(ωk), ` = 0, 1, · · · . (4.40)

3. Solve the linear system of equations

V±(ω`) = W (±,j)
n + ψ±(ω`)

n−1∑

i=0

βi

ω`
, ` = j, j + 1, · · · , j + n, (4.41)

in order to determine W
(±,j)
n as W

(±,j)
n ≈ u±(t) — the unknowns βi, i =

0, 1, · · · , n− 1 are not of interest.

The solution for W
(±,j)
n can be achieved in an efficient manner via the W-

algorithm of Sidi which follows. For convenience of notation the symbol ± has
been suppressed.

1′ For j = 0, 1, · · · set

M
(j)
0 =

V (ωj)
ψ(ωj)

, N
(j)
) =

1
ψ(ωj)

. (4.42)
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2′ For j = 0, 1, · · · and n = 1, 2, · · · compute

M (j)
n =

M
(j+1)
n−1 −M

(j)
n−1

ω−1
j+n − ω−1

j

, N (j)
n =

N
(j+1)
n−1 −N

(j)
n−1

ω−1
j+n − ω−1

j

. (4.43)

3′ For all j and n set

W (j)
n =

M
(j)
n

N
(j)
n

. (4.44)

The quantities W
(±,j)
n converge to u±(t) very quickly as n → ∞ with j fixed

(j = 0, for example). In fact,

W (±,j)
n − u±(t) = O(n−µ) as n →∞, for any µ > 0. (4.45)

Thus, it is sufficient to take W
(±,0)
n , n = 1, 2, · · · as the approximation to u±(t).

In the case where f(t) is a real function we have u−(t) = u+(t) hence

f(t) =
ect

π
<

[∫ ∞

0

eiωtf̄(c + iω)dw

]
, (4.46)

and we need only compute one of u±(t).
The key to the success of the mW-transformation is the correct choice of the
ω`. These are chosen so that sign[φ(ω`)φ(ω`+1)] = −1 for all large `, where
φ(ω) = eiωtf̄(c + iω). Surprisingly, the method we have described above may
still work even when the function f̄(s) is not precisely as described above, but
sign[φ(ω`)φ(ω`+1)] = −1 for all large `. For example, very good approximations
are obtained for the test function f35 in Section 9.4.
In some cases, where f̄(s) does not behave the way we described above, it may
still be possible to choose the ω` to guarantee that sign[φ(ω`)φ(ω`+1)] = −1
for all large `, and this is the most general case described in Sidi [214]. Let
us consider the test function f15(t) in Section 9.4, for example. We have, since
f̄15(s) = e−4s1/2

,

φ(ω) = eiωte−4(c+iω)1/2
,

= ei[ωt+4i(c+iω)1/2] = eiη(ω).

Expansion of η(ω) gives

η(ω) = ωt + 4ieiπ/4ω1/2 + O(ω−1/2) as ω →∞.

This implies

<η(ω) = ωt− 23/2ω1/2 + O(ω−1/2) as ω →∞.

Thus the appropriate choice for the ω` are the positive zeros of

sin(ωt− 23/2ω1/2) = 0,
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that is

ω` =

[√
2 +

√
2 + (` + 1)πt

t

]2

, ` = 0, 1, · · · . (4.47)

It is important to make sure that the integrals ψ(ω`) in (4.39) are computed
accurately. The computation may be expensive when the singularities of f̄(s)
are close to the interval I` = [c + ix`, c + ix`+1] in the sense that the ratio

distance of a point of singularity of f̄(s) to I`

length of interval I`
, (I` = ω`+1 − ω`)

is small. This is the case when t is small so that in this case c could be increased
somewhat. This is a very effective method for evaluating the inverse transform.
Because of the equivalence of (4.46) with A and B where

A =
2ect

π

∫ ∞

0

<[f(c + iω)] cos ωtdω (4.48)

and

B =− 2ect

π

∫ ∞

0

=[f(c + iω)] sin ωtdω (4.49)

this author has computed A and B in preference to (4.46) as the agreement in
decimal places gives a practical indication of the likely accuracy of the result.
A program is provided at the website
www.cf.ac.uk/maths/cohen/programs/inverselaplacetransform/ .
This approach seems to work well when f̄(s) belongs to the class of functions out-
lined above and will give good results for the functions f1(t), f3(t), f25(t), f30(t)
— see the survey in Chapter 9. Prior numerical experience shows that it will
also work for f11(t) and f35(t). In the case of f15(t) the choice of ω` = (`+1)π/t
gives poor results and we would need to choose ω` satisfying (4.47) to get good
approximations to f15(t).

4.4 Methods using the Fast Fourier Transform
(FFT)

The methods of the previous two sections involved the evaluation of a Fourier
integral. Dubner and Abate [71] developed a method for inverting the Laplace
transform by relating the Fourier integral to a finite Fourier cosine transform.
Given a real function h(t) for which h(t) = 0 for t < 0 they constructed a set of
even periodic functions gn(t) of period 2T such that for n = 0, 1, 2, · · · we have

gn(t) =
{

h(t), nT ≤ t ≤ (n + 1)T,
h(2nT − t), (n− 1)T ≤ t ≤ nT.

(4.50)
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Figure 4.1: Function representation by even Fourier series

This is equivalent to defining gn(t) in (-T,T) by

gn(t) =
{

h(nT + t), 0 ≤ t ≤ T,
h(nT − t), −T ≤ t ≤ 0,

(4.51)

for n = 0, 2, 4, · · · and

gn(t) =
{

h((n + 1)T − t), 0 ≤ t ≤ T,
h((n + 1)T + t), −T ≤ t ≤ 0.

(4.52)

for n = 1, 3, 5, · · · (see fig. 4.1).
The Fourier cosine representation of each gn(t) is given for all n by

gn(t) =
1
2
An,0 +

∞∑

k=1

An.k cos
(

kπt

T

)
, (4.53)

where the coefficients, which are finite cosine transforms, can be expressed as

An,k =
2
T

∫ (n+1)T

nT

h(t) cos
(

kπt

T

)
dt. (4.54)

If we sum (4.53) over n we get

∞∑
n=0

gn(t) =
2
T

[
1
2A(ω0) +

∞∑

k=1

A(ωk) cos
(

kπt

T

)]
, (4.55)
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where

A(ωk) =
∫ ∞

0

h(t) cos
(

kπt

T

)
dt. (4.56)

Dubner and Abate note that A(ωk) is a Fourier cosine transform and by letting

h(t) = e−ctf(t), (4.57)

it is seen to be the Laplace transform of a real function f(t) with the transform
variable being given by s = c + i(kπ/T ). That is, A(ωk) = <f̄(s). Thus (4.55)
becomes

∞∑
n=0

ectgn(t) =
2ect

T

[
1
2<f̄(c) +

∞∑

k=1

<
{

f̄

(
c +

kπi

T

)}
cos

kπt

T

]
. (4.58)

The left hand side of (4.58) is almost the inverse Laplace transform of f̄(s) in
the interval (0, T ), but it contains an error. From (4.51) and (4.52) we have

∞∑
n=0

ectgn(t) =
∞∑

n=0

ecth(2nT + t) +
∞∑

n=0

ecth(2nT − t).

The first term on the right hand side is f(t) and thus

∞∑
n=0

ectgn(t) = f(t) + E1, (4.59)

where the error E1 is given by

E1 =
∞∑

n=1

exp(−2cTn)[f(2nT + t) + exp(2ct)f(2nT − t)]. (4.60)

Dubner and Abate show that E1 can only be made small for t ≤ T/2 and they
conclude that for the interval (0, T/2) the inverse Laplace transform can be
found to any desired accuracy by the formula

f(t) ' 2ect

T

[
1
2<f̄(c) +

∞∑

k=1

<
{

f̄

(
c +

kπi

T

)}
cos

kπt

T

]
, (4.61)

where on the right hand side we are evaluating the Laplace transform. Dubner
and Abate show that Fast Fourier Transform (FFT) methods can be employed
to reduce computation in (4.61) if f(t) is required for a significant number
of t values. If f(t) is required at the equidistant points t = j∆t where j =
0, 1, 2, · · · , 1

4N , i.e. tmax = 1
4N∆t then we can compute f(t) in the following

way:- We compute

A(k) =
1

N∆t

∞∑
n=−∞

<
{

f̄

(
c +

2πi

N
(k + nN)

)}
, k = 0, 1, · · · , N − 1 (4.62)
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Figure 4.2: Function representation by odd Fourier series

then use the FFT routine to determine f(j∆t)/b(j) from

f(j∆t)
b(j)

=
N−1∑

k=0

A(k) exp
(

2πi

N
jk

)
, (4.63)

where b(j) = 2 exp(aj∆t). The value of f(j∆t) is accepted as a representation
of the function f for j ≤ 1

4N .

Durbin [73] showed that an alternative procedure to that of Dubner and Abate
could be obtained if we constructed a set of odd periodic functions kn(t), say,
with the property that, for each n > 0

kn(t) =
{

h(t) nT ≤ t ≤ (n + 1)T
−h(2nT − t) (n− 1)T ≤ t ≤ nT

(4.64)

(see fig. 4.2).
Proceeding as before we have the Fourier representation for each kn(t) is

kn(t) =
∞∑

k=0

Bn,k sin
(

kπt

T

)
, (4.65)
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where

Bn,k =
∫ (n+1)T

nT

e−ctf(t) sin
(

kπt

T

)
dt. (4.66)

This leads to

∞∑
n=0

ectkn(t) = −2ect

T

[
=

{
f̄

(
c +

ikπ

T

)}
sin

(
kπt

T

)]
.

But we also have

∞∑
n=0

ectkn(t) = f(t) +
∞∑

k=1

e−2ckT [f(2kT + t)− e2ctf(2kT − t)],

and hence

f(t) + E2 = −2ect

T

[
=

{
f̄

(
c +

ikπ

T

)}
sin

(
kπt

T

)]
, (4.67)

where E2 is given by

E2 =
∞∑

k=1

e−2ckT [f(2kT + t)− e2ctf(2kT − t)]. (4.68)

Durbin points out that this approach yields essentially the same result as the
method of Dubner and Abate but now the error term has the opposite sign.
Consequently the error bound can be reduced considerably by averaging (4.58)
and (4.67). We have now

f(t) + E3 =
ect

T

[
1
2<{f̄(c)}+

∞∑

k=1

<
{

f̄

(
c +

ikπ

T

)}
cos

(
kπt

T

)

−
∞∑

k=1

=
{

f̄

(
c +

ikπ

T

)}
sin

(
kπt

T

)]
,

(4.69)

where

E3 =
∞∑

k=1

e−2ckT f(2kT + t). (4.70)

Since f̄(s) may be assumed to have no singularities for <s > 0 it follows that f(t)
is bounded at infinity by some function of the form κtm where κ is a constant
and m is a non-negative integer. If |f(t)| < κ then

|E3| <
∞∑

k=1

κe−2kcT =
κ

e2cT − 1
(4.71)
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In the more general case we have

|E3| <
∞∑

k=1

e−2kcT κ(t + 2kT )m

< κ(2T )m
∞∑

k=1

e−2kcT (k + 1)m

< κ(2T )m

∫ ∞

1

e−2xcT (x + 1)mdx

The integral may be computed by integration by parts and we obtain

|E3| < K(2T )me−2cT
m+1∑

i=1

αi

(2cT )i
(4.72)

where K, α1, · · · , αm+1 are constants. Clearly the error term decreases rapidly
with cT but it also depends on T . Durbin notes that the approximation given
by (4.69) is equivalent to applying a trapezoidal rule with step π/T but his
strategy has resulted in an error bound proportional to exp(−2cT ) whereas, in
general, the error bound is O(1/T 2). Finally, he uses the Fast Fourier Transform
to implement the inversion.
Despite the apparent smallness of the error bound in Fourier series methods
we note that, following Sidi [215], because the Fourier series is multiplied by
a factor ect, this could result in the theoretical error being dominated by the
computational error. More precisely, denoting the term in square brackets in
(4.69) by S(t), we have

∣∣∣∣f(t)− ect

T
S(t)

∣∣∣∣ = |E3| < C(T )e−2cT , t ∈ (0, 2T ),

where C(T ) is a constant which depends on T . If we make an error ε in com-
puting S(t) , that is, we compute S1(t) where S1(t) = S(t) + ε then the error in
computing f(t) is given by

∣∣∣∣f(t)− ect

T
S1(t)

∣∣∣∣ ≤
∣∣∣∣f(t)− ect

T
S(t)

∣∣∣∣ +
ect

T
|S(t)− S1(t)|,

≤ C(T )ec(t−2T )/T + εect/T.

It follows that if ε is too large the computational error may dominate the theo-
retical error. This is particularly the case for t large and close to 2T .

Crump [53] uses the formula (4.69) in a different way. By assuming that
|f(t)| ≤ Meγt he finds that

E3 ≤ Meγt/(e2T (c−γ) − 1), 0 < t < 2T. (4.73)

Thus by choosing c sufficiently larger than γ we can make E3 as small as desired.
For convergence to at least 2 significant figures, say, this means that we require
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the relative error ER ≡ E3/Meγt ≤ 0.005, so that for all practical purposes
(4.73) can be replaced by

E3 ≤ Meγte−2T (c−γ), 0 < t < 2T. (4.74)

Crump points out that the case t = 0 has to be analysed separately since
there will usually be a discontinuity at t = 0 in the Fourier series represen-
tation for f(t)e−ct, call it g∗(t), in 0 ≤ t < 2T . In fact g∗(0) = [f(0) +
e−2cT f(2T )]/2. Thus at t = 0 the method approximates 1

2f(0) with error
E3 + f(2T ) exp(−2cT )/2 ≈ 3

2E3 which is approximately 50 percent greater
than the error bound for t > 0.
The error bound (4.74) provides a simple algorithm for computing f(t) to pre-
scribed accuracy. If we require the numerical value of f(t) over a range of t for
which the largest is tmax and the relative error is to be smaller than E′ then we
choose T such that 2T > tmax and use (4.74) to compute c, i.e. we choose

c = γ − (ln E′)/2T. (4.75)

γ can be computed from the transform f̄(s) by determining the pole which has
largest real part. The series on the right hand side in (4.69) is then summed
until it has converged to the desired number of significant figures. However
convergence may be slow and Crump uses the epsilon algorithm (see §11.4)
to speed the convergence. The reader can download a sample program using
NAG Library Routine C06LAF which is based on Crump’s method at the URL
www.cf.ac.uk/maths/cohen/programs/inverselaplacetransform/ . The idea of
speeding up convergence had previously been considered by Simon, Stroot and
Weiss [219] who had used Euler’s method of summation (see§11.4). This ap-
proach was effective but superior results were achieved by Crump’s method.
Veillon [243] also applies the epsilon algorithm but uses it with the Dubner and
Abate summation (4.61). A novel feature of her method is the use of splines to
estimate the “best” value of c.
De Hoog et al [64] point out that the coefficients in the Fourier series are derived
from an infinite sum and the formal manipulation used to derive them is only
valid if we have uniform convergence. This would not be the case for example
if f̄(s) = 1/s and we are using the Durbin/Crump approach. They also find
some drawbacks in using the epsilon algorithm as round-off error can make the
process numerically unstable if a large number of diagonals are employed. De
Hoog et al opt to retain the original complex form to determine the inverse
Laplace transform. That is they aim to compute

g(t) = 1
2 f̄(γ) +

∞∑

k=1

f̄

(
γ +

ikπ

T

)
exp

(
ikπt

T

)
=

∞∑

k=0

akzk, (4.76)

with a0 = 1
2 f̄(γ), ak = f̄(γ + ikπ/T ), k = 1, 2, · · · and z = exp(iπt/T ).

Instead of applying the epsilon algorithm to the partial sums of (4.76), which
involves calculating the epsilon table for each particular value of z, they use the
quotient-difference algorithm which makes the rational approximation available
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in the form of a continued fraction (see §11.5). This enables the series (4.76) to
be evaluated at any time value by recursion. Given the power series (4.76) we
want to calculate the continued fraction

v(z) =
d0

1+
d1z

1+
d2z

1+ ···
,

which has the same power series development. In practice this means determin-
ing v2M (z) where

u2M (z) =
2M∑

k=0

akzk, v2M (z) =
d0

1+
d1z

1+ ···

d2Mz

1
,

and
u2M (z)− v2M (z) = O(z2M+1),

i.e. v2M (z) is the same diagonal Padé approximant as ε
(0)
2M . The coefficients

dk can be calculated using the quotient-difference algorithm as follows. We set
e
(i)
0 = 0 for i = 0, · · · , 2M and q

(i)
1 = ai+1/ai for i = 0, · · · , 2M − 1. Successive

columns of the array are then determined from

e(i)
r = q

(1+1)
r − q

(i)
r + e

(i+1)
r−1 , r = 1, · · · ,M, i = 0, · · · , 2M − 2r, (4.77)

q(i)
r = q

(i+1)
r−1 e

(i+1)
r−1 /e

(i)
r−1, r = 2, · · · ,M, i = 0, · · · , 2M − 2r − 1. (4.78)

We form the array

q(0)
1

e(1)
0 e(0)

1

q(1)
1 q(0)

2

e(2)
0 e(1)

1 e(0)
2

q(2)
1 q(1)

2

e(3)
0 e(2)

1

q(3)
1

e(4)
0

The continued fraction coefficients dk are given by d0 = a0 and

d2k−1 = −q
(0)
k , d2k = −e

(0)
k , k = 1, · · · ,M.

The qd-algorithm involves approximately the same amount of computational
effort as the epsilon algorithm but does not need to be redone for each value of z.
The successive convergents can be evaluated from (11.70) and (11.70a) by taking
p0 = 0, p1 = d0 and q0 = 1, q1 = 1 and letting pk = dk+1z, qk = 1, k ≥ 2
which de Hoog et al give in the equivalent form

A−1 = 0, B−1 = 1, A0 = d0, B0 = 1
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An = An−1 + dnzAn−2

Bn = Bn−1 + dnzBn−2

]
n = 1, · · · , 2M

giving finally
v2M (z) = A2M/B2M .

The estimate for f(t) is then

f̃(t) =
eγt

T
<

{
A2M

B2M

}
. (4.79)

In addition to applying an acceleration procedure to the power series (4.76) they
also apply an acceleration procedure to the continued fraction. This is achieved
by writing

v(z) =
d0

1+
d1z

1+ ···

dnz

(1 + rn+1)
,

where rn+1(z) is the remainder. Usually, when evaluating the nth convergent
An/Bn, we take rn+1 zero but we can evaluate v(z) more accurately if we can
get a better estimate for the remainder. The simplest assumption that we can
make is that dn+m = dn+1 for all m ≤ 1 which gives

rn+1 = dn+1z/(1 + rn+1).

As many continued fractions exhibit the pattern that coefficients repeat them-
selves in pairs, i.e.

dn+2m = dn, dn+2m+1 = dn+1, m ≥ 0,

this leads to a remainder estimate r′n+1 satisfying

r′n+1 = dn+1z/(1 + dnz/(1 + r′n+1)),

or
r′2n+1 + [1 + (dn − dn+1)z]r′n+1 − dn+1z = 0.

For convergence we need to determine the root of smaller magnitude which is

r′n+1(z) = −hn+1[1− (1 + dn+1z/h2
n+1)

1/2], (4.80)

where hn+1 = 1
2 [1 + (dn − dn+1)z] and the complex square root has argument

≤ π/2. The further improvement in convergence acceleration is obtained by
computing Ak, Bk as before for k = 1, · · · , 2M − 1 and then computing

A′2M = A2M−1 + r′2MA2M−2, B′
2M = B2M−1 + r′2MB2M−2.

The computed estimate for f(t) is then

f̃(t) =
eγt

T
<

{
A′2M

B′
2M

}
. (4.81)
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Honig and Hirdes [112] highlight a deficiency in all the above methods,
namely, the dependence of the discretization and truncation errors on the free
parameters. Suitable choice of these parameters can make the discretization
error small but increase the truncation error and vice versa. They draw on the
‘Korrektur’ method of Albrecht and Honig [8] to reduce the discretization error
without increasing the truncation error. Honig and Hirdes note that because
the series (4.61) can only be summed to a finite number of terms (N) there also
occurs a truncation error given by

ET (N) =
ect

T

[ ∞∑

k=N+1

{
<f̄

(
c + i

kπ

T

)
cos

kπ

T
t−=f̄

(
c + i

kπ

T

)
sin

kπ

T
t

}]
,

giving the approximate value of f(t) as

fN (t) =
ect

T

[
− 1

2<f̄(c) +
N∑

k=0

{
<f̄

(
c + i

kπ

T

)
cos

kπ

T
t

−=f̄

(
c + i

kπ

T

)
sin

kπ

T
t

}]
.

(4.82)

Equation (4.58) can now be written

f(t) = f∞(t)− E3. (4.83)

The ‘Korrektur’ method uses the approximation

f(t) = f∞(t)− e−2cT f∞(2T + t)− E4. (4.84)

The approximate value of f(t) is thus

{fN (t)}K = fN (t)− e−2cT fN0(2T + t). (4.85)

The truncation error of the ‘Korrektur’ term e−2cT f∞(2T + t) is much smaller
than ET (N) if N = N0 which indicates that N0 can be chosen less than N
implying that just a few additional evaluations of f̄(s) will achieve a considerable
reduction in the discretization error. Honig and Hirdes assert that the analysis
in Albrecht and Honig enables one to show that

(a) |E4| ≤ 2κ

e2cT (e2cT − 1)
if m = 0, (4.86)

(b) |E4| ≤ 3me−2cT

{
K(2T )me−2cT

m+1∑

i=1

αi

(2cT )i

}
, (4.87)

if m > 0 and (m!)/2m − 1 ≤ 2cT .
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Honig and Hirdes outline the three acceleration methods used in the Fortran
subroutine LAPIN which is given as an Appendix to their paper. These are the
ε-algorithm (see§11.4) and the minimum-maximum method which are applied
when the function fN (t) is non-monotonic and the curve fitting method when
fN (t) is monotonic, which is to be understood in the sense that

|fN (t)− f∞(t)| ≥ |fM (t)− f∞(t)|, t fixed

for all N, M with N ≤ M . The minimum-maximum method consists of finding
three neighbouring stationary values of fN (t) as a function of N, say a maximum
at N = N1 and N = N3 and a minimum at N = N2. Linear interpolation is
then used to find the value of fint at N = N2 given the data pairs (N1, fN1(t))
and (N3, fN3(t)) and the mean value (fint +fN2(t))/2 is computed. This yields
a new approximation for f∞(t).
The curve fitting method consists in fitting the parameters of any function
that has a horizontal asymptote y = ζ by demanding that this function is an
interpolating function for the points (N, fN (t)), 0 ≤ N0 ≤ N ≤ N1. The
function value of the asymptote ζ is the desired approximation for f(t). The
use of the simple rational function

fN (t) =
ξ

N2
+

η

N
+ ζ, (4.88)

is reported as giving high accuracy for small N1.
Honig and Hirdes give two methods for choosing optimal parameters N and cT
and the reader should consult this paper as poor choice of the parameters will
not improve the results. They also give a specification of the variables which
are required to operate their subroutine LAPIN — the program and a digest of
the specification can be downloaded from
www.cf.ac.uk/maths/cohen/programs/inverselaplacetransform/ .

4.5 Hartley Transforms

Hwang, Lu and Shieh [114], following the approach in the previous section,
approximate the integral in

f(t) =
ect

2π

∫ ∞

−∞
f̄(c + iω)eiωtdω,

by applying the trapezium rule for integration with ω = kπ/mT and ∆ω =
π/mT where m is a positive integer (m = 1 previously). They thus obtain

f(t) ≈ ect

2mT

∞∑

k=−∞
f̄

(
c + i

kπ

mT

)
exp

(
i

kπ

mT
t

)
. (4.89)



92 CHAPTER 4. QUADRATURE METHODS

This last result can be written as

f(t) ≈ ect

2mT

M∑

k=−M

f̄

(
c + i

kπ

mT

)
exp

(
i

kπ

mT
t

)
+ ectE, (4.90)

where E is the truncation error and M is a positive integer which is chosen so
that ectE is negligible compared with f(t).
If we let t = q∆T, ∆T = 2T/N, M = mnN/2 + [(m− 1)/2] with N a positive
power of 2, then (4.90) can be rewritten as

f(q∆T ) =
ecq∆T

2mT

(
WN/2

)qn
m2∑

r=−m1

W qr/m

{
N−1∑

k=0

f̄r(k)W qk

}
(4.91)

= (−1)qn eqc∆T

2mT

m2∑
r=−m1

W qr/m

̂{
N−1∑

k=0

̂̄fr(k)W−qk

}
(4.92)

where ẑ denotes the complex conjugate of z, [x] the integer part of x and

m1 =
[
m− 1

2

]
, (4.93)

m2 =
{

m1 for m odd
m1 + 1 for m even (4.94)

W = exp
(

i
2π

N

)
(4.95)

f̄r(k) =
n1∑

p=0

f̄

(
c + i

π

T

(
k +

r

m
+

N

2
(2p− n)

))
, k = 0, 1, · · · , N − 1

(4.96)
and

n1 =
{

n k = 0 and r 6= m/2
n− 1 otherwise (4.97)

From (4.92) the value of f(q∆t), q = 0, 1, · · · , N − 1 can be obtained by m sets
of N -point FFT computations. After selecting appropriate values of c, T, m, n
and N we can compute f̄r(k) from f̄(s) using (4.96). Let

fr(q) =
N−1∑

k=0

̂̄fr(k)W−qk, q = 0, 1, · · · , N − 1 (4.98)

Then
{̂̄fr(k)} FFT−−−−→ {fr(q)},

and the inverse function f(t) at t = q∆T is determined from

f(q∆T ) = (−1)qn ecq∆T

2mT

m2∑
r=−m1

W qr/mf̂r(q), q = 0, 1, · · · , N − 1 (4.99)
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On account of the method of construction of (4.90) a relationship exists be-
tween f̄r(k) and f̄−r(k) and one does not have to perform m sets of N -point

FFT computations. First note that ̂f̄(c + iω) = ̂f̄(c− iω). Then, from (4.96)
we have the following properties of f̄r(k) :-

f̄0(k) =

{
real
̂f̄0(N − k)

k = 0, N/2
k = 1, 2, N/2− 1

f̄r(k) = ̂f̄−r(N − k) r = 1, 2, · · · ,m1

f̄r(k) = ̂f̄−r(N − k − 1) k = 0, 1, · · · , N/2− 1, r = m/2, m even





(4.100)
Applying these results in conjunction with (4.98) shows that the transformed
sequence {fr(q)} has the following properties:-

f0(q) = real q = 0, 1, · · · , N − 1
fr(q) = f̂−r(q) q = 0, 1, · · · , N − 1

={f̂r(q)W q/2} = 0 q = 1, · · · , N − 1, r = m/2, m even





(4.101)

Thus in order to obtain f(t) at t = q∆T, q = 0, 1, · · · , N − 1 only m2 + 1 sets
of N -point FFT computations are required. Suppose the computed sequences
are {fr(q)} for r = 0, 1, · · · ,m2. Then

f(q∆T ) ≈ (−1)qn ecq∆T

2mT
f̃(q) (4.102)

where

f̃(q) =





f0(q) + 2
∑m1

r=1

[<{fr(q)} cos
(

2πqr
mN

)−={fr(q)} sin
(

2πqr
mN

)]
m = odd

f0(q) + 2
∑m1

r=1

[<{fr(q)} cos
(

2πqr
mN

)−={fr(q)} sin
(

2πqr
mN

)]

+<{fm2(q)} cos(πq/N) m = even
(4.103)

We now illustrate how the above FFT inversion formula (4.92) can be evaluated
by using multiple sets of N -point FHT computations (see Appendix 11.2). First
let

hr(q) =
N−1∑

k=0

Hr(q)cas(2πkq/N), (4.104)

and denote the above transform by

{Hr(k)} FHT−−−−→ {hr(q)}. (4.105)

If {H(k)} and {h(q)} are discrete Hartley transform pairs and {f̄(k)} and {f(q)}
are discrete Fourier transform pairs and, in addition, H(k) and f̄(k) are related
by

H(k) = <{f̄(k)} − ={f̄(k)}, k = 0, 1, · · · , N − 1 (4.106)
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then

h(q) = <{f(q)}+ ={f(N − q)}, k = 0, 1, · · · , N − 1 (4.107)

Hwang et al define Hr(k) by

Hr(k) =





<{f̄0(k)} − ={f̄0(k)} r = 0,
k = 0, 1, · · · , N/2− 1

<{f̄0(N − k)}+ ={f̄0(N − k)} r = 0,
k = N/2, N/2 + 1, · · · , N−1

<{f̄r(k)} − ={f̄r(k)} r = 1, 2, · · · ,m1,
k = 1, 2, · · · , N − 1

<{f̄−r(N − k)}+ ={f̄−r(N − k)} r = −1,−2, · · · ,−m1,
k = 0, 1, · · · , N − 1

<{f̄r(k)} − ={f̄r(k)} r = m/2,m even
k = 0, 1, · · · , N/2− 1

<{f̄r(N − k − 1)}+ ={f̄r(N − k − 1)} r = m/2,m even
k = N/2, N/2 + 1, · · · , N−1

(4.108)
From (4.100) it follows that Hr(k) and f̄r(k) satisfy the relation (4.106) and
thus hr(q) and fr(q) are related by

hr(q) = <{fr(q)}+ ={fr(N − q)} for q = 0, 1, · · · , N − 1
r = −m1,−m1 + 1, · · · ,m2

(4.109)

Since f̂r(q) = f−r(q), we have

h0(q) = f0(q) for q = 0, 1, · · · , N − 1 (4.110)
h−r(q) = <{f−r(q)}+ ={f−r(N − q)}

= <{fr(q)}+ ={fr(N − q)} for r = 1, 2, · · · ,m1 (4.111)

It follows that

<{fr(q)} = 1
2 [hr(q) + h−r(q)] (4.112)

and

={fr(q)} = 1
2 [hr(N − q)− h−r(N − q)] (4.113)

for q = 0, 1, · · · , N − 1 and r = 0, 1, · · · ,m1. Finally, we have the FHT expres-
sions for f(t) at t = q∆T ,

f(q∆T ) ≈ (−1)nq ecq∆T

2mT

(
h0(q) +

m1∑
r=1

(
[hr(q) + h−r(q)] cos

2πqr

mN

− [hr(N − q)− h−r(N − q)] sin
2πqr

mN

))
m odd

(4.114)
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f(q∆T ) ≈ (−1)nq ecq∆T

2mT

(
h0(q) +

m1∑
r=0

(
[hr(q) + h−r(q)] cos

2πqr

mN

− [hr(N − q)− h−r(N − q)] sin
2πqr

mN

)

+ hm/2(q) cos
πq

N
− hm/2(N − q) sin

πq

N

)
m even

(4.115)

Hwang, Wu and Lu [115] note that L−1{f̄ (n)(s)} = (−1)ntnf(t) and find that
with their test examples they get superior results by using the FHT method
applied to f ′′(s).

4.6 Dahlquist’s “Multigrid” extension of FFT

Dahlquist [55] noted that the Discrete Fourier Transform (DFT) is often an
efficient device for the numerical computation of Fourier integrals, particularly
with a Fast Fourier Transform (FFT) implementation. However, if F(ω) is
singular or nearly singular at ω = 0 as well as slowly decreasing as ω → ∞,
the number of function values required can become prohibitively large. Thus it
would be advantageous to have some scheme with a variable step size.
Suppose that [−t′, t′], [−ω′, ω′] are the shortest intervals on the t and ω axes
respectively that have to be covered in order to meet accuracy requirements and
N is the number of sub-intervals on a grid on each of these intervals. The highest
frequency that can be resolved by the grid on the t-axis is then ω′ = π/∆t =
πN/2t′. Hence 1

2N ≥ t′ω′/π. However, Dahlquist finds it more convenient to
choose equality so that, if N ′ = 1

2N ,

πN ′ = t′ω′. (4.116)

Dahlquist observes that if we want to compute f(t) to d decimal places when

F(ω) = (σ + iω)−kφ(ω), (4.117)

and φ(ω) is a slowly varying function such that φ(ω) ≈ 1 for large and small
values of ω, then N ′ = max ω/∆ω, for a straightforward application of the DFT.
A reasonable choice is ∆ω ≈ 0.1σ. The choice of max ω if we desire that the
error in f(t) on the whole real axis should be less than 10−d is, applying criteria
formulated by Dahlquist, given by max ω1−k/(k − 1) = 10−d. If this accuracy
is required only for |t| ≥ δ then we have instead

(2/π)δ−2k max ω−1−k = 10−d.

The implications of the above are that with σ = 0.01, k = 1.5, and d = 5 we
have ∆ω ≈ 0.001 and about 4 ·1013 function values are needed for a DFT in the
first case. With δ = 10−4 about 2 · 108 values are needed in the second case.
Clearly the difficulty in the above example is the vast number of function evalua-
tions to be performed. However, for functions like F(ω) defined by (4.117), where
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t-axis ω-axis0

G(t′0) G(ω′2)

G(t′1) G(ω′1)

G(t′2) G(ω′0)

Gt Gω

On ω-axis: −maxω 0 max ω = ω′0
On t-axis: −max t 0 max t = t′m−1

Figure 4.3: The structure of the grids used in the algorithm

it is reasonable to interpolate on some equidistant logarithmic grid, Dahlquist
presents an algorithm which has some of the advantages of FFT and which can
be implemented to invert the Laplace transform. The number of function values
now required is of the order of 1000 which is much more manageable.
The algorithm works with the same N on m grids on the ω-axis, and m corre-
sponding grids on the t-axis. On the ω-axis Dahlquist chooses

ω′ = ω′0, ω
′
1, · · · , ω′m−1, where ω′0 = maxω, ω′j = ω′j−1/2. (4.118)

Similarly, on the t-axis we choose,

t′ = t′0, t
′
1, · · · , t′m−1, t′j = πN ′/ω′j , hence t′j = 2t′j−1. (4.119)

G(t′) denotes the grid with N +1 equidistant points on the interval [−t′, t′] and
G(ω′) has a similar connotation. We set

Gω =
m−1⋃

j=0

G(ω′j), Gt =
m−1⋃

j=0

G(t′j). (4.120)

Thus in figure 4.3 we have illustrated the case m = 3, N = 8 although more
typical values would be m = 20, N = 128. Dahlquist notes that the sets Gω

and Gt are similar in structure to the set of floating point numbers. Locally
they are equidistant while globally they are more like being equidistant on a
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logarithmic scale. We can be more precise about the number of function values
required which is N ′(m + 1)/2, which is less than N ′ log2(max ω/ min ∆ω).
Having dispensed with the preliminaries relating to the grid we now give the
basis of Dahlquist’s algorithm which is a generalization of Poisson’s summation
formula and is stated in Theorem 4.1

Theorem 4.1 Assume that F(ω) is continuous and absolutely integrable over
(−∞,∞) and F′(ω) is continuous, except for a finite number of jump disconti-
nuities. Let f(t) be the inverse Fourier transform of F(ω). Let t′, ω′ be positive
constants and define the periodic functions

F(ω, ω′) =
∞∑

r=−∞
F(ω + 2rω′), f(t, t′) =

∞∑
m=−∞

f(t + 2mt′). (4.121)

The construction implies that F(ω, ω′) is determined everywhere by its values for
|ω| ≤ ω′ and similarly f(t, t′) is determined by its values for |t| ≤ t′. Assume
that the expansion defining F(ω, ω′) is absolutely and uniformly convergent for
every ω′ > 0, and the same holds for F′(ω, ω′) if some neighbourhoods of the
discontinuities have been excluded.
Let N be a natural number and set

N ′ = N/2, ∆ω = ω′/N ′, t′ω′ = πN ′, ∆t = t′/N ′. (4.122)

These equations also imply

∆ω = π/t′, ∆t = π/ω′, ∆ω∆t = π/N ′. (4.122′)

Then the expansion for f(t, t′) is absolutely convergent for all t, and the discrete
Fourier transform gives

F(r∆ω, ω′) = ∆t
N−1∑

k=0

f(k∆t, t′)e−2πirk/N , r = 0, 1, · · · , N − 1. (4.123)

¥

The inverse DFT yields,

f(k∆t, t′)∆t =
1
N

N−1∑
r=0

F(r∆ω, ω′)e2πirk/N , k = 0, 1, · · · , N − 1.

This can also be written as

f(k∆t, t′) =
∆ω

2π

N−1∑
r=0

F(r∆ω, ω′)e2πirk/N , k = 0, 1, · · · , N − 1, (4.124)

by virtue of (4.122) and (4.122′). Note that because of the periodicity of f(t, t′)
we can consider the first argument to be reduced modulo 2t′ so that it lies in
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the interval [−t′, t′). Similarly for F(ω, ω′).
An important property of f(t, t′) is that

f(t, t′) =
∞∑

j=−∞
f(t + 4jt′) +

∞∑

j=−∞
f(t− 2t′ + 4jt′),

or
f(t, t′) = f(t, 2t′) + f(t− 2t′, 2t′). (4.125)

Likewise,
F(ω, ω′) = F(ω, 2ω′) + F(ω − 2ω′, 2ω′). (4.125′)

Thus if the 4ω′-periodic function F(·, 2ω′) is known on G(2ω′) then F(ω, ω′) is
directly determined for ω ∈ G(2ω′), but for ω ∈ G(ω′)\G(2ω′) some interpola-
tion is necessary. This can be achieved by subtracting F(ω) from both sides of
(4.125′) to get

F(ω, ω′)− F(ω) = (F(ω, 2ω′)) + F(ω − 2ω′, 2ω′). (4.126)

If now |ω| ≤ ω′ then, by the definition of the 2ω′-periodic function F(·, ω′), it
follows that the left hand side of (4.126) depends only on values of F(ω) with
|ω| > ω′. This is also the case for the right hand side.
Dahlquist now assumes that F can be approximated with sufficient accuracy by
a piecewise cubic spline G with the following properties:-

A. G(ω) = 0 for |ω| > ω′0 (The largest ω′ in the sequence).

B. For j = 1, 2, · · · ,m−1, G(ω) is, for ω′j < ω < 2ω′j , a cubic spline deter-
mined by interpolation of F(ω) at ω = ω′j + 2kω′j/N

′, k = 0, 1, · · · , N ′/2,
with “not a knot conditions” at k = 1 and k = N ′/2 − 1, (DeBoor [63]).
Similarly for −2ω′j < ω < −ω′j — the accuracy of this interpolation is
O(N−4).

We now have the algorithm (where F has to be understood as G).

ALGORITHM I: Construction of F(ω, ω′), ω′ = ω′0, ω′1, · · · , ω′m−1, and
computation of f(t, t′) by the FFT.
1. Compute F(ω, ω′0) = F(ω), ω ∈ G(ω′0).
2. Set t0 = πN ′/ω′0.
3. Compute f(t, t′0) by the FFT from (4.124), t ∈ G(t0).
4. For ω′ = ω′1, ω

′
2, · · · , ω′m−1, do:

5. Compute F(ω, ω′)− F(ω), from (4.126), ω ∈ G(2ω′).
6. Interpolate the result from G(2ω′) to G(ω′)\G(2ω′).
7. Compute F(ω, ω′) = F(ω) + (F(ω, ω′)− F(ω)), ω ∈ G(ω′).
8. Set t = πN ′/ω.
9. Compute f(t, t′) by the FFT, from(4.126), t ∈ G(t′), where

G(t′) = {t = kt′/N ′, k = 0,±1,±2, · · · ,±N ′}.
End.
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In order to complete the process and reconstruct f(t) from the 2t′-periodic
function f(t, t′), t′ = t′m−1, t

′
m−2, · · · , t′0 we need the analogue of (4.126), namely

f(t, t′)− f(t) = (f(t, 2t′)− f(t)) + f(t− 2t′, 2t′), (4.126′)

and the assumption that f(t) can be replaced by a function g(t) with the prop-
erties:
A*. g(t) = 0 for |t| > t′m−1;
B*. For j = 0, 1, · · · ,m − 2, g(t) is, for t′j < t < 2t′j a cubic spline determined
by the interpolation at t = t′j +2kt′j/N

′,, k = 0, 1, · · · , N ′/2, with “not a knot
conditions” at k = 1 and k = N ′/2− 1. Similarly for −2t′j < t < −t′j .
This leads to the following algorithm (where again f is used instead of g).

ALGORITHM II: Reconstruction of f(t) from f(t, t′), t = t ′m−1, t
′
m−2, · · · , t′0.

1. Compute f(t) = f(t, t′m−1), t ∈ G(t′m−1).
2. For t′ = t′m−2, t

′
m−3, · · · , t′0, do:

3. Compute f(t, t′)− f(t) from (4.126′), t ∈ G(2t′).
4. Interpolate the result from G(2t′) to G(t′)\G(2t′).
5. Compute f(t) = f(t, t′)− (f(t, t′)− f(t)), t ∈ G(t′)\G(2t′).
End.

Dahlquist gives details of the practicalities involved in implementing the
algorithms, which we shall omit here, before proceeding to the application of
finding the inverse Laplace transform. He writes

ḡ(s) =
∫ ∞

0

e−stg(t)dt, s = σ + iω, (4.127)

where g(t) is a real function. Thus

<ḡ(s) =
∫ ∞

0

cos(ωt)e−σtg(t)dt. (4.127′)

Now assume that <ḡ(s) satisfies sufficient conditions for the validity of the
inverse cosine transform formula. Then

e−σtg(t) =
2
π

∫ ∞

0

cos(ωt)<ḡ(s)dω, t > 0. (4.128)

If we set
F(ω) = 2<ḡ(s), f(t) = e−σ|t|g(|t|) (4.129)

then we can rewrite (4.128) in the form

f(t) =
1
2π

∫ ∞

−∞
eiωtF(ω)dω, (4.128′)

which is valid for all real t. This last integral has to be interpreted as a Cauchy
principal value, i.e., ∫ ∞

−∞
= lim

T→∞

∫ T

−T

.

The above re-formulation has transformed the problem to one in which the
Algorithms I and II are applicable — see Dahlquist for further particulars.
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4.7 Inversion of two-dimensional transforms

We have seen earlier in this Chapter that Fourier series approximation provides
an efficient technique for evaluating the inverse transform in one dimension.
Moorthy [158] has extended this technique to two dimensions — the extension
to higher dimensions also being possible.
If |f(t1, t2)| < Meγ1t1+γ2t2 and we define

f̄(s1, s2) =
∫ ∞

0

∫ ∞

0

e−s1t1−s2t2f(t1, t2)dt1dt2 <s1 > γ1, <s2 > γ2 (4.130)

then the inverse transform can be expressed as

f(t1, t2) =
1

(2πi)2

∫ c1+i∞

c1−i∞

∫ c2+i∞

c2−i∞
es1t1+s2t2 f̄(s1, s2)ds1ds2, (4.131)

where c1 > γ1 and c2 > γ2. Equation (4.131) can be rewritten as

f(t1, t2) =
ec1t1+c2t2

4π2

{∫ ∞

−∞

∫ ∞

−∞
[<f̄(c1 + iω1, c2 + iω2) cos(ω1t1 + ω2t2)

−=f̄(c1 + iω1, c2 + iω2) sin(ω1t1 + ω2t2)]dω1dω2

}
(4.132)

This can be rewritten as

f(t1, t2) =
ec1t1+c2t2

2π2

{∫ ∞

−∞

∫ ∞

−∞
[<f̄(c1 + iω1, c2 + iω2) cos(ω1t1 + ω2t2)

−=f̄(c1 + iω1, c2 + iω2) sin(ω1t1 + ω2t2)]dω1dω2

+
∫ ∞

−∞

∫ ∞

−∞
[<f̄(c1 + iω1, c2 − iω2) cos(ω1t1 − ω2t2)

−=f̄(c1 + iω1, c2 − iω2) sin(ω1t1 − ω2t2)]dω1dω2

}
.

(4.133)

Moorthy defines a function gjk(t1, t2) with the property that

gjk(t1, t2) = e−(c1t1+c2t2)f(t1, t2) in (2jT, 2(j + 1)T )× (2kT, 2(k + 1)T ),

and elsewhere it is periodic with period 2T in t1 and t2. Thus gjk has Fourier
series representation given by

gjk(t1, t2) = 1
4ajk

00 + 1
2

∞∑
m=1

(ajk
0m cos my + bjk

0m sinmy)

+ 1
2

∞∑
n=1

(ajk
n0 cos nx + cjk

n0 sin nx)

+ 1
2

∞∑
n=1

∞∑
m=1

(ajk
nm cos nx cos my + bjk

nm cosnx sin my

+cjk
nm sin nx cosmy + djk

nm sinnx sin my
)
,
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where x = πt1/T, y = πt2/T , and, typically,

ajk
nm =

1
T 2

∫ 2(j+1)T

2jT

∫ 2(k+1)T

2kT

f(u, v) cos(nπu/T ) cos(mπv/T )e−c1u−c2vdudv,

with similar expressions for bjk
nm, cjk

nm djk
nm. Substituting for the a, b, c, d in

gjk(t1, t2) and summing over j, k Moorthy obtained, after interchanging the
order of summation

∞∑

j=0

∞∑

k=0

gjk(t1, t2)

=
1

2T 2

{
1
2 f̄(c1, c2) +

∞∑
m=1

[
<f̄

(
c1, c2 +

imπ

T

)
cos

(
mπt2

T

)

− =f̄

(
c1, c2 +

imπ

T

)
sin

(
mπt2

T

)]

+
∞∑

n=1

[
<f̄

(
c1 +

inπ

T
, c2

)
cos

(
nπt1
T

)

−=f̄

(
c1 +

inπ

T
, c2

)
sin

(
nπt1
T

)]

+
∞∑

n=1

∞∑
m=1

[
<f̄

(
c1 +

inπ

T
, c2 ± imπ

T

)
cos

(
nπt1 ±mπt2

T

)

− =f̄

(
c1 +

inπ

T
, c2 ± imπ

T

)
sin

(
nπt1 ±mπt2

T

)]}
.

(4.134)

If the sum on the right hand side of (4.134) is denoted by g(t1, t2) then the
approximate value of f on (0, 2T )× (0, 2T ) is given by

f̃(t1, t2) = ec1t1+c2t2g(t1, t2).

Moorthy shows that the error in the approximation f̃ can be reduced by taking
c1 > γ1 and c2 > γ2. A suitable choice for T was found by experimentation to
be such that tmax < 2T and 0.5tmax < T ≤ 0.8tmax. A further error is incurred
in evaluating (4.134) as the best we can achieve is the evaluation of gN (t1, t2)
and hence f̃N (t1, t2) where the summations in (4.134) have been limited to N
terms. Control of the truncation error is obtained by choosing N such that the
difference between f̃N+1(t1, t2) and f̃N+N/4(t1, t2) is negligible.



Chapter 5

Rational Approximation
Methods

5.1 The Laplace Transform is Rational

If a given Laplace transform f̄(s) can be represented in the form P (s)/Q(s)
where P (s) and Q(s) are polynomials of degree p and q respectively with p ≤ q,
say,

P (s) = sp + a1s
p−1 + · · ·+ ap,

Q(s) = sq + b1s
q−1 + · · ·+ bq,

then the expansion theorem (1.23) or the theory of partial fractions informs us
that if the roots of Q(s) = 0 are distinct

f̄(s) =
P (s)
Q(s)

= A0 +
A1

s− α1
+

A2

s− α2
+ · · ·+ Aq

s− αq
, (5.1)

where α1, α2, · · · , αq are the roots of the equation Q(s) = 0 and A0, A1, · · · , Aq

are constants. It is now very easy to determine f(t) from the knowledge of the
expansion (5.1) as

f(t) = A0δ(t) + A1e
α1t + A2e

α2t + · · ·+ Aqe
αqt. (5.2)

If any of the roots of Q(s) = 0 are repeated then we have to modify (5.1) and
(5.2).

Example 5.1 A Batch Service Queue Problem.
One approach to determining an approximation to the estimation of the mean
number of customers in Application 1, §10.1, is by iterating rational approxi-
mations. Our initial approximation is

M̄1(s) =
3

s(s + 1)
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which yields
M1(t) = 3− 3e−t,

After one iteration we have the approximation

M̄2(s) ∼ 3(s + 4)2

s(s3 + 9s2 + 24s + 7)
,

=
48/7

s
+

α

(s− a)
− β(s− b) + γc

(s− b)2 + c2
,

where α = −6.635827218, β = −0.2213156422, γ = −0.10313013323, a =
−0.3313149094, b = −4.334342545 and c = 1.53016668458. It follows that

M2(t) = 48
7 + αeat + ebt(β cos ct + γ sin ct).

After two iterations we have

M̄3(s) =
p(s)
q(s)

,

where

p(s) = 3(s + 4)2(s3 + 12s2 + 48s + 55)(s3 + 12s2 + 48s + 37)

q(s) = s(s9 + 33s8 + 480s7 + 3987s6 + 20532s5 + 66624s4

+ 132117s3 + 146211s2 + 71076s + 4606).

We can show that the roots of the denominator are s = 0 and

−5.5040122292± 2.7546334460i = a1 ± ib1

−5.0969767814± 1.6328516314i = a2 ± ib2

−4.1895509142± 1.3080555188i = a3 ± ib3

−1.6721845193± 0.3992751935i = a4 ± ib4

−0.0745511119 + 0.0000000000i = a5

which enables us to determine the partial fraction representation of M̄3(s),
namely,

M̄3(s) =
α5

s− a5
+

4∑

i=1

αi(s− ai) + βibi

(s− ai)2 + b2
i

+
48840
2303s

where

α1 = −0.0247620331 β1 = −0.013920958
α2 = 0.0022108833 β2 = 0.047603163
α3 = −0.1670066287 β3 = −0.154532492
α4 = −0.5637150577 β4 = −0.324196946
α5 = −20.45384832
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It is now easy to determine the function corresponding to each Laplace trans-
form. We have

M3(t) = α5e
a5t +

4∑

i=1

eait(αi cos bit + βi sin bit) + 21.20712115 .

We can, of course, get the next approximation M4(t) in the same way but the
expressions become horrendously complicated.

Longman and Sharir [145] have shown that partial fraction decomposition can
be avoided. Consider first the special case where

f̄(s) =
1

Q(s)
,

then

f̄(s) =
q∑

r=1

1
Q′(αr)

1
s− αr

,

where α1, · · · , αq are the roots of Q(s) = 0 which we assume to be distinct. It
follows that

f(t) =
q∑

r=1

1
Q′(αr)

eαrt.

Expanding exp(αrt) as a Taylor series we have

f(t) =
q∑

r=1

1
Q′(αr)

∞∑

k=0

αk
r tk

k!
=

∞∑

k=0

tk

k!

(
q∑

r=1

αk
r

Q′(αr)

)
.

Now, from the theory of residues, we know that if R is sufficiently large so that
the circle C : |z| = R includes all poles of the integrand zk/Q(z)

uk =
q∑

r=1

αk
r

Q′(αr)
=

1
2πi

∮

|z|=R

zk

Q(z)
dz.

Further, letting R →∞ and applying the result
∣∣∣∣
∫

C
f(z)dz

∣∣∣∣ < LM,

where L is the length of C and M = maxC |f(z)| we find

uk = 0, k = 0, 1, · · · , q − 2. (5.3)

For k = q−1 we make the substitution z = Reiθ and we find, by letting R →∞,
that

uq−1 = 1. (5.4)



106 CHAPTER 5. RATIONAL APPROXIMATION METHODS

For larger values of k we can obtain uk by recursion. This follows from using
the fact that if αr is a root of Q(s) = 0

uk =
q∑

r=1

αk
r

Q′(αr)
= −

q∑
r=1

b1α
k−1
r + b2α

k−2
r + · · ·+ bqα

k−q
r

Q′(αr)
,

or

uk = −
q∑

i=1

biuk−i, k ≥ q. (5.5)

Thus we have an expression for f(t),

f(t) =
∞∑

k=q−1

uk
tk

k!
, (5.6)

for which we do not need to find the roots of Q(s) = 0. Even when the roots
α1, · · · , αq are not all distinct as long as the uk are defined by (5.3), (5.4) and
(5.5) the result (5.6) still holds true. We now consider the general case where
the numerator P (s) 6= 1. We now have

f(t) =
q∑

r=1

P (αr)
Q′(αr)

eαrt =
∞∑

k=0

tk

k!

q∑
r=1

αk
rP (αr)
Q′(αr)

,

or

f(t) =
∞∑

k=0

vktk

k!
, (5.7)

where

vk =
q∑

r=1

αk
rP (αr)
Q′(αr)

=
q∑

r=1

αk+p
r + a1α

k+p−1
r + · · ·+ apα

k
r

Q′(αr)
,

giving
vk = uk+p + a1uk+p−1 + · · ·+ apuk. (5.8)

Equation (5.7) is an expression for f(t) which does not require computation of
the roots of Q(s) = 0 as the coefficients are obtained recursively from (5.8) and
a knowledge of the uk. Again, this procedure can also be shown to be valid
when the roots of Q(s) = 0 are repeated. Although, technically, our result is
still a sum of exponentials it is effectively a Taylor series expansion and can be
evaluated by the methods of Chapter 3.

5.2 The least squares approach to rational
Approximation

This approach to determining the Inverse Laplace Transform was advocated by
Longman [137] and assumes that we can approximate the function f(t) by g(t),
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where

g(t) =
n∑
1

Aie
−αit. (5.9)

Longman seeks to determine the {Ai} and {αi}, i = 1, 2, · · · , n so that the
function S defined by

S =
∫ ∞

0

e−wt[f(t)− g(t)]2dt, (5.10)

is minimized. w(≥ 0) is a constant and the weight function e−wt is required to
ensure convergence of the integral in (5.10). Necessary conditions for S to be a
minimum are that

∂S/∂Ai = 0, ∂S/∂αi = 0. (5.11)

Since

∂S

∂Ai
= −2

∫ ∞

0

e−(w+αi)tf(t)dt + 2
n∑

j=1

Aj

∫ ∞

0

e−(w+αi+αj)tdt, i = 1, · · · , n

the first equation of (5.11) yields
n∑

j=1

Aj

w + αi + αj
= f̄(w + αi), i = 1, · · · , n. (5.12)

Similarly, ∂S/∂αi = 0 yields
n∑

j=1

Aj

(w + αi + αj)2
= −f̄ ′(w + αi), i = 1, · · · , n. (5.13)

In [137] Longman restricts himself to the case where the Ai and αi are real. He
subsequently considered the case where the Ai and αi occur in complex conju-
gate pairs (see [142]). To solve the non-linear equations (5.12), (5.13) Longman
uses the method of Fletcher-Powell-Davidon [85]. We have found it more con-
venient to use the method of Gill and Murray [96] as this is available as a NAG
Library Routine E04FDF but, whichever method might be used, we have to
minimize some real objective function φ(x1, x2, · · · , x2n) in 2n real variables
x1, x2, · · · , x2n. In our case we write

A1 = x1 + ix2 α1 = xn+1 + ixn+2

A2 = x1 − ix2 α2 = xn+1 − ixn+2

A3 = x3 + ix4 α3 = xn+3 + ixn+4 (5.14)
A4 = x3 − ix4 α4 = xn+3 − ixn+4

if n is even we terminate with

An−1 = xn−1 + ixn αn−1 = x2n−1 + ix2n

An = xn−1 − ixn αn = x2n−1 − ix2n (5.14a)

.
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while if n is odd we end with

An = xn αn = x2n. (5.14b)

The function φ we can take as

φ =
n∑

i=1




∣∣∣
n∑

j=1

Aj

w + αi + αj
− f̄(w + αi)

∣∣∣
2

+
∣∣∣

n∑

j=1

Aj

(w + αi + αj)2
+ f̄ ′(w + αi)

∣∣∣
2


 ,

(5.15)

and we consider the equations (5.12), (5.13) to be solved if, given some small
prescribed ε, we can find x1, x2, · · · , x2n such that

φ < ε.

Note that the minimization procedure might give us a local minimum of φ (or
S) so that it will be necessary to compare the results associated with several
trial values for the vector x = (x1, · · · , x2n) before we arrive at an absolute
minimum.
Because of the geometry of the objective function local minima abound and
one has to be very shrewd in ones acceptance of results. While one would
expect more accurate approximation by exponential sums as n increases, and
Sidi [211] has established this property, the proliferation of local minima makes
it a difficult task to realise.

5.2.1 Sidi’s Window Function

Sidi [212] extended the approach of Longman by replacing the weight function
e−wt by a ‘window’ function Ψ(t). Sidi’s rationale in introducing this func-
tion was that for small values of t the function g(t) would approximate f(t)
closely but because of the strong damping effect of exp(−wt) there could be a
substantial deviation between g(t) and f(t) for larger t. However,

Ψ(t) = tNe−wt, (5.16)

where N is a positive integer and w > 0 has the property of having a maximum,
call it Ψ0, at t = N/w and being greater than 1

2Ψ0 in an interval of 2
√

N/w on
either side of the maximum before tailing off to zero at t = 0 on the left and
some multiple of N on the right. The net effect of the weight function Ψ(t) is to
ensure a good approximation to f(t) in the window [N −√N/w, N +

√
N/w].

Note that the choice of Ψ(t) is restricted by the requirement that
∫ ∞

0

Ψ(t)f(t)dt,
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needs to be expressed as a simple function of f̄(s).
With g(t) defined as before in (5.9) and defining S′ by

S′ =
∫ ∞

0

Ψ(t)(f(t)− g(t))2dt, (5.17)

we have

S′ =
∫ ∞

0

Ψ(t)[f(t)]2dt− 2
n∑

i=1

Ai

∫ ∞

0

Ψ(t)e−αitf(t)dt

+
n∑

i=1

n∑

j=1

AiAj

∫ ∞

0

Ψ(t)e−αite−αjtdt,

which reduces to

S′ =
∫ ∞

0

Ψ(t)[f(t)]2dt− 2
n∑

i=1

Ai(−1)N f̄ (N)(αi + w)

+
n∑

i=1

n∑

j=1

AiAjN !/(αi + αj + w)N+1.

(5.18)

The best approximation in the least squares sense is the one which satisfies

∂S′/∂Ai = 0, ∂S′/∂αi = 0, (5.19)

that is

ḡ(N)(αi + w) = f̄ (N)(αi + w), i = 1, · · · , n, (5.20)

ḡ(N+1)(αi + w) = f̄ (N+1)(αi + w), i = 1, · · · , n. (5.21)

The techniques for solving non-linear equations mentioned previously can now
be brought into play to determine the Ai and αi.

5.2.2 The Cohen-Levin Window Function

Ideally, a pulse function such as H(t− a)−H(t− b), a < b would be the pre-
ferred choice for Ψ(t) as only behaviour in the interval (a, b) would be minimised
and anything extraneous would be ignored. This has to be ruled out as it does
not enable us to express the integral in (5.17) in terms of a simple function of
f̄(s). Since x = e−wt only varies between 0 and 1 for t ∈ [0,∞), w > 0, the
question that can be asked is:- Can we find a polynomial p(x) which is large in
the window region [d, 1−d] but which is small outside or, more precisely, which
satisfies

|p(x)| < m(< 1) x ∈ [0, d], [1− d, 1]
|p(x)| > m d ≤ x ≤ 1− d,

5.2 LEAST SQUARES APPROACH.
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and

|p( 1
2 )| = 1?

The answer is in the affirmative. It is well-known that the Chebyshev polyno-
mial Tn(x) is equi-oscillatory in [-1, 1] and increases unboundedly outside that
interval. Thus we can construct p(x) by choosing it to be symmetric about
x = 1

2 and to have equi-oscillatory behaviour in [0, d]. The required polynomial
is

p(x) =
Tn

(
(2x−1)2− 1

2 (1+D)

1
2 (1−D)

)

Tn

(
− 1

2 (1+D)

1
2 (1−D)

) ,

where D = (1− 2d)2. Since the window function has to be positive p(x) cannot
fulfil this role but [p(x)]2 can and thus we choose

Ψ(t) = [p(x)]2, x = e−wt. (5.22)

The simplest case is when n = 2. If we take d = 0.25, for example, then

p(x) ∝ [T2( 8
3{(2x− 1)2 − 5

8})]2,
∝ 32x4 − 64x3 + 38x2 − 6x + 9

64 ,

yielding

[p(x)]2 = 1024x8 − 4096x7 + 6528x6 − 5248x5 + 2221x4

− 474x3 + 46 11
16x2 − 1 11

16x + 81
4096 .

There is still a drawback about having (5.22) as a window function namely the
presence of the constant term in [p(x)]2 as convergence of the integral (5.17)
cannot now be guaranteed. This can be resolved to some extent by taking

Ψ(t) = x[p(x)]2, x = e−wt. (5.23)

We mention that for general d, 0 < d < 0.5 and n = 2 we have

p(x) = 32x4 − 64x3 + (40− 8D)x2 − 8(1−D)x + 1
4 (1−D)2.

Ψ(t) can be evaluated from (5.22). We can similarly establish window functions
corresponding to n = 3, 4, etc.
A further improvement to the above method can be made by multiplying Ψ(t)
by the Sidi window function. If we arrange for the maximum of the Sidi window
function to coincide with the maximum of Ψ(t) then the product of the two
functions will reinforce the contribution to the least squares integral in the
window interval and decrease the contribution outside.1

1The author wishes to thank the Royal Society for supporting the above research by con-
tributing to a travel grant.
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5.3 Padé, Padé-type and Continued Fraction

Approximations

One approach to obtaining rational approximations to a given Laplace transform
is to determine a continued fraction approximation to the transform. Thus, for
example, if f̄(s) = e−1/sg(s), where g(s) is a rational function of s, we could
determine a continued fraction approximation for e−1/s by the method of Thiele
(§11.5), curtail it at some appropriate convergent, and then multiply it by g(s)
and apply the results of §5.1 . This is illustrated by the following example:

Example 5.2 Determine a continued fraction expansion for f(x) = e−x. Hence
find a rational approximation for e−1/s/s.
We have, following §11.5, ρ−2(x) = ρ−1(x) = 0, φ0(x) = e−x.
From (11.78)

ρ0(x) = e−x,

and from (11.79)
φ1(x) = 1/(−e−x) = −ex.

Similarly we find

ρ1(x) = −ex, φ2(x) = −2e−x,

ρ2(x) = −e−x, φ3(x) = 3ex,

and, in general, we obtain by induction that

φ2r(x) = (−1)r2e−x, φ2r+1(x) = (−1)r+1(2r + 1)ex,

ρ2r(x) = (−1)re−x, ρ2r+1(x) = (−1)r+1(r + 1)ex.

Thus the continued fraction expansion about x = 0 is

e−x = 1 +
x

−1+
x

−2+
x

3+
x

2+
x

−5+
x

−2 + · · · .

Curtailing this at the term x/3 we find

e−x ≈
1− 2

3
x +

1
6
x2

1 +
1
3
x

.

It follows that

e−1/s

s
≈

s2 − 2
3
s +

1
6

s2(s +
1
3
)

.

Since the Laplace transform of the right hand side is

9
2
e−t/3 +

1
2
t− 7

2

.
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we have an approximation to the inverse transform. When t = 1 the approxima-
tion gives f(t) ≈ 0.22439 . The exact inverse transform is, from §11.1, J0(2

√
t)

and, when t = 1 this has the value 0.22389. We would expect to get better re-
sults by taking more terms in the continued fraction expansion. Note, however,
that with the above approximation we cannot expect good results for large t as
f(t) ∼ t/2 whereas

J0(2
√

t) → 0 as t →∞.

Luke [148], [147] and [149] has suggested that when f̄(s) is a complicated func-
tion of s then f̄(s) should be approximated by a sequence of rational functions
f̄n(s) the inverses of which, hopefully, will rapidly converge to f(t) as t →∞ in
some interval 0 ≤ t ≤ T or, alternatively, for t ≥ T where T is specified.
Longman [137] has used the method of Padé approximants to find rational ap-
proximations for the inverse Laplace transform and illustrates the method with
the example

f̄(s) = (1/s) exp{−s/(1 + σs)1/2}, σ > 0 (5.24)

First he finds the Maclaurin expansion of sf̄(s) which is

sf̄(s) =
∞∑

k=0

aksk, (5.25)

where
a0 = 1, a1 = −1, a2 = (1 + σ)/2,

and

ak = (−1)k

{
1
k!

+
σ/2

(k − 2)!

+
k−1∑
r=2

(k − r + 2)(k − r + 4) · · · (k + r − 2)
(k − r − 1)!r!

(σ

2

)r
}

, k > 2.

(5.26)

In the special case where σ = 0 we have f̄(s) = e−s/s giving f(t) = H(t − 1).
Also if s is sufficiently large f̄(s) ≈ g(s) = (1/s) exp{−(s/σ)1/2} so that for very
small t we can expect f(t) ≈ g(t) = erfc[ 12 (σt)−1/2].
We now have to find the Padé approximants. Longman [136] has given sim-
ple recursion formulae for computing the coefficients in the Padé table, which
is assumed normal, and avoids the evaluation of determinants of high order.
Suppose

Epq = P (s)/Q(s), (5.27)

is the [p/q] Padé approximant (see Appendix 11.5 for notation adopted) of sf̄(s)
where we fix c0 to be 1. Then the [p− 1, q] and [p, q − 1] approximants satisfy

(a0 + a1s + · · · )(γ0 + γ1s + · · ·+ γqs
q) = β0 + β1s + · · ·+ βp−1s

p−1

+ 0sp + · · ·+ 0sp+q−1 + O(sp+q),
(5.28)
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and

(a0 + a1s + · · · )(γ′0 + γ′1s + · · ·+ γ′q−1s
q−1) = β′0 + β′1s + · · ·+ β′ps

p

+ 0sp+1 + · · ·+ 0sp+q−1 + O(sp+q).
(5.29)

Subtracting (5.29) from (5.28) we have on noting that γ0 = γ′0 = 1 and β0 =
β′0 = a0 and simplifying

(a0 + a1s + · · · )[(γ1 − γ′1) + (γ2 − γ′2)s + · · ·+ (γq−1 − γ′q−1)s
q−2 + γqs

q−1]

= (β1 − β′1) + (β2 − β′2)s + · · ·+ (βp−1 − β′p−1)s
p−2 − β′ps

p−1

+ 0sp + 0sp+1 + · · ·+ 0sp+q−2 + O(sp+q−1).
(5.30)

If γ1−γ′1 = 1 the above equation would represent the [p−1, q−1] approximant.
However, this is not generally the case and we have to divide both sides of (5.30)
by γ1−γ′1 (which cannot vanish in a normal table) to determine the [p−1, q−1]
approximant. Calling the coefficients in the numerator Bi, i = 0, · · · , p− 1 and
those in the denominator Γi, i = 0, · · · , q − 1 we see that

Γi =
γi+1 − γ′i+1

γ1 − γ′1
, i = 1, · · · , q − 2

Γq−1 =
γq

γ1 − γ′1
, (5.31)

and

Bi−1 =
βi − β′i
γ1 − γ′1

, i = 1, · · · , p− 1

Bp−1 = − β′p
γ1 − γ′1

. (5.32)

Clearly B0 = a0 and Γ0 is by construction equal to 1. The relations (5.32) can
also be written as

B0 = a0, Bi−1 = a0
βi − β′i
β1 − β′1

, i = 2, · · · , p− 1

Bp−1 = −a0

β′p
β1 − β′1

. (5.33)

The recurrence relations (5.31) and (5.33) can be used to build up the Padé
table starting from the first row and column in the following way. We have

γ′0 = 1
γ′i = γi − Γi−1γq

Γq−1
i = 1, 2, · · · , q − 1

}
(5.34)
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and
β0 = a0

βi = β′i −
Bi−1β′p
Bp−1

i = 1, 2, · · · , p− 1

}
(5.35)

Now Ep0 is just
a0 + a1s + · · ·+ cps

p,

and thus given the first n+1 coefficients a0, a1, · · · , an of sf̄(s) we can compute
the coefficients Eij , i + j ≤ n in the triangle

E00 E01 E02 E03 · · · E0n

E10 E11 E12 · · · E1,n−1

E20 E21 · · · E2,n−2

E30 · · ·
...
En0

(5.36)

from a knowledge of E00, E01, · · · , E0n, which can be computed from

γ0 = 1
γ1 = −a1/a0

γ2 = −(a2 + a1γ1)/a0

· · · · · · · · ·
γn = −(an + an−1γ1 + · · ·+ a1γn−1)/a0





(5.37)

and
β0 = a0.

For the function defined by (5.24) we have used the program LONGPAD, which
can be downloaded from the URL
www.cf.ac.uk/maths/cohen/programs/inverselaplacetransform/ ,
to determine the diagonal elements in the Padé Table for sf̄(s) and we obtained
the results in Table 5.1 when σ = 1.

The approximations to f̄(s) are then f̄n(s) = Enn/s giving a corresponding
approximation fn(t) to f(t). Thus we have, for example,

f2(t) = 1− e−2.73764t(0.45627 cos bt + 6.16775 sin bt), b = 1.27702;

f4(t) = 1 + ea1t(3.262493 cos b1t− 60.32278 sin b1t)

+ ea2t(−4.143798 cos b2t + 14.536713 sin b2t),

where

a1 = −4.624887 b1 = 0.950494
a2 = −4.633295 b2 = 3.322285 .

These approximations give exactly the same results as those found by Longman
[137]. See, however, Longman [140] where an alternative approach is adopted.
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k Ekk

2 1−0.4s+0.0595833s2

1+0.6s+0.1095833s2

3 1−0.35s+0.0552443s2−0.004068s3

1+0.65s+0.1552443s2+0.0140927s3

4 1−0.3s+0.0439073s2−0.0037713s3+0.0001638s4

1+0.7s+0.1939073s2+0.0255527s3+0.0013800s4

5 1−0.25s+0.0318916s2−0.0026204s3+0.0001401s4−0.00000395s5

1+0.75s+0.2318916s2+0.03718790s3+0.0031209s4+0.0001111s5

Table 5.1: Padé table for sf̄(s), f̄(s) defined by (5.24).

Van Iseghem [242] developed an interesting method for inverting Laplace trans-
forms using Padé-type approximants. She assumes that the function f(t) can
be expressed in the form

f(t) = e−λt
∑

n≥0

anLn(2λt), (5.38)

where Ln denotes the Laguerre polynomial of degree n. It follows that

f̄(s) =
1

s + λ

∑

n≥0

an

(
s− λ

s + λ

)n

. (5.39)

If f̄m(s) denotes the m-th partial sum of (5.39) it can be considered as a (m/m+
1) Padé-type approximant of f̄ with denominator (s + λ)m+1 and, at the point
s = λ, f̄ has a Taylor series expansion

f̄(s) =
∑

n≥0

cn(s− λ)n, such that f̄(s)− f̄m(s) = O
(
(s− λ)m+1

)
. (5.40)

Van Iseghem shows that the coefficients an can be determined from the equation

an =
n∑

i=0

(
n

i

)
ci(2λ)i+1, (5.41)

which enables the terms in (5.38) to be computed. Various theoretical conver-
gence properties are established but crucial to the whole method is the choice
of λ as there could be severe cancellation arising in the computation of (5.41)
because of the binomial coefficients coupled with the fact that λ can be greater
than 1. She makes improvements to the method, firstly by a choice of λ which
leads to the best rate of convergence of the series (5.39), secondly by a mod-
ification that leads to convergence of the series in the least square sense by

5.3. PADE, PADE-TYPE AND CONTINUED FRACTION` `
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using as a weight function the Sidi window function. Full details of the method
can be found in van Iseghem’s paper [242]. Expansions in terms of Laguerre
polynomials have been determined by other methods in Chapter 3.

5.3.1 Prony’s method and z-transforms

If a function f(t) is given by

f(t) =
n∑

j=1

Aje
bjt, (5.42)

and f(t) is known at the 2n ordinates kT, k = 0, 1, · · · , 2n − 1 then the 2n
parameters Aj , bj , j = 1, 2, · · · , n can be determined by a method due originally
to Prony [65]. Weiss and McDonough [249] determine the unknown parameters
in the following way. Since f(kT ) = fk is known for k = 0, 1, · · · , 2n − 1 its
z-transform has the form

F (z) = f0 + f1z
−1 + · · ·+ f2n−1z

−(2n−1) + · · · (5.43)

Now
Z{ebjT } =

z

z − ebjT
=

z

z − zj
,

where zj = exp(bjT ) and thus

Z{
n∑

j=1

Aje
bjT } =

n∑

j=1

Ajz

z − zj

=
anzn + an−1z

n−1 + · · ·+ a1z

zn + αn−1zn−1 + · · ·+ α1z + α0
(5.44)

where the denominator is Πn
j=1(z − zj).

Equating (5.43) and (5.44) and rearranging we see that we have the classical
Padé formulation

anzn + an−1z
n−1 + · · ·+ a1z =(zn + αn−1z

n−1 + · · ·+ α1z + α0)·
· (f0 + f1z

−1 + · · ·+ f2n−1z
−(2n−1) + · · · ).

Equating like powers of z yields

f0 = an

f0αn−1 + f1 = an−1

...
f0α1 + f1α2 + · · ·+ fn−2αn−1 + fn−1 = 0


 (5.45)

and
f0α0 + f1α1 + · · ·+ fn−1αn−1 + fn = 0
f1α0 + f2α1 + · · ·+ fnαn−1 + fn+1 = 0

...
fn−1α0 + fnα1 + · · ·+ f2n−2αn−1 + f2n−1 = 0


 (5.46)
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Solution of the linear equations (5.46) enables the αj to be determined and, by
finding the eigenvalues of the companion matrix (§11.7) we can determine the
zj which are the roots of the polynomial equation

zn + αn−1z
n−1 + · · ·+ α1z + α0 = 0.

The parameters bj are then immediately determined from the equation

bj =
1
T

ln zj . (5.47)

Finally, the {aj} can be computed from (5.45) and this enables us to compute
the {Aj} as they are the numerators in the partial fraction expansion

1
z
F (z) =

n∑

j=1

Aj

z − zj
. (5.48)

We give an example to illustrate the method.

Example 5.3 If it is known that

f(t) = A1e
b1t + A2e

b2t + A3e
b3t,

determine A1, A2, A3 and b1, b2, b3 given the data

f0 = 2.5, f1 = 0.58731, f2 = 0.22460, f3 = 0.08865, f4 = 0.03416, f5 = 0.01292,

where fn = f(nT ) and T = 1. Solution of the equations (5.46) yields

α2 = −0.6424221998, α1 = 0.1122057146, α0 = −0.004104604860.

Substitution in (5.45) gives

a3 = 2.5, a2 = −1.0187454995, a1 = 0.12781330433.

The quantities zj are the roots of the cubic equation

z3 − 0.6424221998z2 + 0.1122057146z − 0.004104604860 = 0,

and are found to be

z1 = 0.3674771169, z2 = 0.0.2253873364, z3 = 0.04955774567.

Since T = 1 it follows from (5.47) that

b1 = −1.0010942292, b2 = −1.4899348617, b3 = −3.0046167110.

Finally we have

1
z
F (z) =

2.5z2 − 1.0187454995z + 0.12781330433
(z − z1)(z − z2)(z − z3)

,

=
2.015496762

z − z1
− 1.008646087

z − z2
+

1.493149325
z − z3

.
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The data was generated by rounding the values of f(t) = 2e−t−e−1.5t +1.5e−3t

at t = 0, 1, · · · , 5 to 5 decimal places. Clearly, the error in the data caused by
rounding has led to a perturbation in the coefficients of the polynomial in z
which has affected the roots and the subsequent determination of the Aj . The
reader should repeat the analysis with data rounded to 3 decimal places.

5.3.2 The Method of Grundy

The methods of earlier sections and Padé approximants effectively enable us
to compute the function f(t) in a region around t = 0 for positive values of
t. These approximations are usually poor for large values of t. Grundy [108]
tackles this problem by constructing two point rational approximants in the
form of continued fractions.
Suppose that a function g(z) can be expanded about z = 0 in the series

g(z) =
∞∑

n=0

cnzn (5.49)

and about z = ∞ in the form

g(z) =
∞∑

n=1

bnz−n (5.50)

(5.49) and (5.50) may be either convergent or asymptotic. The leading coeffi-
cients c0 and b1 must be non-zero but other coefficients may be zero. The object
of the Grundy method is to construct a continued fraction, called a M - fraction,
which has the form

Mm(z) =
c0

1 + d1z +

n2z

1 + d2z + ··· +

nmz

1 + dmz
, (5.51)

which has the property that it agrees with m terms of (5.49) and m terms of
(5.50).
In some applications the above might not be possible and the best that can
be achieved is the construction of a continued fraction Mp,q(z) which fits p + q
terms of (5.49) and p−q terms of (5.50). In the case where p = m+r and q = r
we have

Mm+r,r(z) =
c0

1 + d1z +

n2z

1 + d2z + ··· +

nmz

1 + dmz +

nm+1z

1 +

nm+2z

1 + ···+
nm+2rz

1
(5.52)

Since we know from Chapter 2, (2.40)-(2.43), that under certain conditions the
Laplace transform f̄(s) can be expanded as either a convergent series in 1/s
for |s| > R or as a power series we can, in these cases, write down directly
expansions for f(t). Grundy gives the example

f̄(s) =
1√

s(
√

s + a)
, (5.53)
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t M3 M5 M7 Exact
1.0 0.426858 0.427578 0.427584 0.427584
2.0 0.335538 0.336198 0.336204 0.336204
3.0 0.286774 0.287337 0.287341 0.287341
4.0 0.254913 0.255390 0.255396 0.255396
5.0 0.231913 0.232321 0.232326 0.232326

Table 5.2: Convergents to f(t) in Grundy’s method when f̄(s) = 1/
√

s(
√

s + 1).
(Reproduced from [108] with permission)

where

f̄(s) =
1
s

∞∑
n=0

(−1)n
( a

s1/2

)
, |s| > a2, (5.54)

and consequently

f(t) =
∞∑

n=0

(−1)nantn/2

Γ
(
1 + n

2

) . (5.55)

Again we can show that

f̄(s) =
1

a
√

s

∞∑
n=0

(−1)n

(√
s

a

)n

, |s| < a2, (5.56)

which yields the asymptotic expansion for f(t) as t →∞

f(t) ∼
∞∑

n=0

(−1)nt−(n+1)/2

an+1Γ
(

1−n
2

) . (5.57)

If we put t = z2 in (5.55) and (5.57) then we have series of the form (5.49) and
(5.50) respectively and the M -fractions can be computed by a method due to
McCabe and Murphy [152]. With a = 1 Grundy constructed Table 5.2. Note
that the exact answer is

f(t) = ea2terfc(a
√

t). (5.58)

5.4 Multidimensional Laplace Transforms

Singhal et al [221] have given a method for the numerical inversion of two
dimensional Laplace transforms which can be extended to higher dimensions.
The method is based on the method of Padé approximation. From the inversion
formula we have

f(t1, t2) =
(

1
2πi

) ∫ c1+i∞

c1−i∞

∫ c2+i∞

c2−i∞
f̄(s1, s2)es1t1es2t2ds1ds2 (5.59)
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By making the substitution

sktk = zk, k = 1, 2

(5.59) becomes

f(t1, t2) =
1

t1t2

(
1

2πi

) ∫ c′1+i∞

c′1−i∞

∫ c′2+i∞

c′2−i∞
f̄

(
z1

t1
,
z2

t2

)
ez1ez2dz1dz2. (5.59′)

Now

ezk ≈ [Nk/Mk](zk) =
∑Nk

i=0(Mk + Nk − i)!
(
Nk

i

)
zi
k∑Mk

i=0(−1)i(Mk + Nk − i)!
(
Mk

i

)
zi
k

, k = 1, 2

where Nk < Mk. We can write the right hand side in the form

[Nk/Mk](zk) =
Mk∑

i=1

Rki

zk − zki

where zki are the poles of the approximation (assumed distinct) and Rki are the
corresponding residues. Substituting [Nk/Mk](zk) for ezk in (5.59′) we obtain

f̃(t1, t2) =
1

t1t2

(
1

2πi

)2 ∫ c′1+i∞

c′1−i∞

∫ c′2+i∞

c′2−i∞
f̄

(
z1

t1
,
z2

t2

)

·
M1∑

i=1

R1i

z1 − zi1

M2∑

i=1

R2i

z2 − z2i
dz1dz2

where f̃ is an approximation to f . If summation and integration are inter-
changed in the above we find

f̃(t1, t2) =
1

t1t2

M1∑

j=1

M2∑

k=1

{
R1jR2k

(
1

2πi

)2

·
∫ c′1+i∞

c′1−i∞

∫ c′2+i∞

c′2−i∞

f̄(z1/t1, z2/t2)
(z1 − z1j)(z2 − z2k)

dz1dz2

}

On the assumption that f̄ has no poles within an appropriate contour applica-
tion of the calculus of residues yields

f̃(t1, t2) =
1

t1t2

M1∑

j=1

M2∑

k=1

R1jR2kf̄

(
z1j

t1
,
z2k

t2

)
. (5.60)

Singhal et al note that functions of the form

f̄(s1, s2) =
1

sm1
1 sm2

2

are inverted exactly if m1 ≤ M1 + N1 + 1 and m2 ≤ M2 + N2 + 1. and conse-
quently their method will work well for functions which are well-approximated
by truncated Taylor series.



Chapter 6

The Method of Talbot

6.1 Early Formulation

This method is based on the evaluation of the inversion integral

f(t) =
1

2πi

∫ c+i∞

c−i∞
estf̄(s)ds, t > 0. (6.1)

where c is real and c > γ, which ensures that all singularities are to the left
of the line <s = c. Direct numerical evaluation of the right hand side of (6.1)
has to take account of the oscillations of est as =s → ±∞. Talbot’s method
overcomes this difficulty by avoiding it. The line B : (c− i∞, c+ i∞) is replaced
by an equivalent contour B′ starting and ending in the left half-plane so that
<s → −∞ at each end. This replacement is permissible if

(i) B′ encloses all singularities of f̄(s);

and

(ii) |f̄(s)| → 0 uniformly in <s ≤ γ as |s| → ∞.

Condition (ii) holds for almost all functions likely to be encountered except
for those with an infinity of singularities on the imaginary axis. Condition (i)
may not be satisfied by a given f̄(s) with a particular B′, but can generally
be made to hold for the modified function f(λs + σ) by suitable choice of the
scaling parameter λ and the shift parameter σ. Thus, if f̄(s) has a singularity
s0, f̄(λs + σ) has a corresponding singularity s∗0 given by

s∗0 = (s0 − σ)/λ, (6.2)

and (6.1) can be replaced by

f(t) =
λeσt

2πi

∫

B′
eλstf̄(λs + σ)ds, t > 0 (6.3)
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In the first version of the method (Talbot [226]), based on a thesis by Green
[106], the contour B′ was taken to be a steepest descent contour through a
saddle-point of the integral

∫
ew(s)ds, i.e. a zero of dw/ds, w = u + iv. This

would be quite impractical to work out for each function f̄(s) to be inverted
but Talbot reasoned that the steepest descent contour for any f̄(s) is likely to
produce good results for all f̄(s) and therefore took the steepest descent contour
for f̄(s) = 1/s. This choice of f̄(s) gives

w(s) = s− ln s,

and the saddle point is ŝ = 1, v̂ = 0. The steepest descent contour is, taking
θ = arg s as a parameter,

B′ : s = α + iθ, α = θ cot θ, −π < θ < π. (6.4)

(6.3) becomes in terms of θ

f(t) =
λeσt

2πi

∫

B′
eλstf̄(λs + σ)

ds

dθ
dθ. (6.5)

As θ varies between −π and π we can apply the trapezium rule for integration
to approximate f(t). Call the approximation f̃(t). Then

f̃(t) =
λeσt

2πi
· π

n

n∑
−n

[
eλt(αk+iθk)f̄(λ(αk + iθk) + σ)

]
(cot θ − θ csc2 θ + i)θ=θk

,

(6.6)
where θk = kπ/n, k = 0,±1, · · · ,±n, i.e.,

f̃(t) =
λeσt

2n

n∑
−n

eλαkt
(−i cot θk + iθk csc2 θk + 1

)
eiλtθk f̄(λsk + σ). (6.7)

Writing
f̄(λsk + σ) = Gk + iHk, (6.8)

where Gk and Hk are real, and noting that αk is unchanged if k is replaced by
−k and f̃(t) must be real, it follows that (6.7) takes the real form

f̃(t) =
λeσt

n

n∑

k=0

′ eλαkt {(Gk − βkHk) cos λtθk − (Hk + βkGk) sin λtθk} , (6.9)

where the prime indicates that the term k = 0 in the summation has to be
multiplied by the factor 1

2 and

βk = θk + αk(αk − 1)/θk. (6.10)

Note that because of the requirement (ii) the value of f will be zero when
k = n and thus the summation in (6.9) is effectively from 0 to n − 1. This
is the basis of the method and, by carrying out an error analysis on the lines
of Green, Talbot was able to choose the parameters n, λ and σ and get very
accurate results for f(t) for a wide variety of f̄(s).
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6.2 A more general formulation

The subsequent paper by Talbot, although it was still modelled closely on that of
Green, outlined a more general approach apart from the rotation of an auxiliary
complex plane through a right angle for greater convenience. Let z = x + iy be
a complex variable and denote by M the interval from z = −2πi to z = 2πi.
Further, let s = S(z) be a real uniform analytic function of z which

(a) has simple poles at ±2πi, and residues there with imaginary parts respec-
tively positive and negative;

(b) has no singularities in the strip |y| < 2π;

(c) maps M 1 - 1 onto a contour B′ traversed upwards in the s -plane, which
encloses all singularities of f(λs + σ) for some λ and σ;

(d) maps the half-strip H : x > 0, |y| < 2π into the exterior of B′.

Then (6.3) holds and can be written as

f(t) =
1

2πi

∫

M

Q(z)dz =
1
2π

∫ 2π

−2π

Q(iy)dy, (6.11)

where

Q(z) = λe(λS+σ)tf̄(λS + σ)S′(z). (6.12)

As z → ±2πi on M we have <s → −∞ by virtue of (a) and (c) and, invoking
(ii), we have Q(±2πi) = 0. We note further that condition (c) depends on f̄(s)
as well as S and cannot be satisfied if f̄(s) has an infinite number of singularities
with imaginary parts extending to infinity. We can proceed as in the previous
section to get a trapezoidal approximation f̃(t) to f(t) from (6.11) which is

f̃(t) =
2
n

n−1∑

k=0

′ <Q(zk), zk = 2kπi/n (6.13)

which is the general inversion formula considered by Talbot.
One particularly attractive feature of Talbot’s method is the fact that we

can estimate the error in f̃(t). For, consider M1 and M2 to be any other two
paths in the half-strip H the former to the right of M and the latter to the left
of M but close enough to M to exclude any singularities of f(λS(z) + σ) and
hence of Q(z). Then

f̃(t) =
1

2πi

∫

M1−M2

Q(z)dz

1− e−nz
(6.14)
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since the residue at z = zk = 2kπi/n, k = 0,±1, · · · ,±(n− 1) is

lim
z→zk

(z − zk)Q(z)
1− e−nz

=
Q(zk)

n
.

Note that the integrand is regular at ±2πi.
Now, by the assumptions (c) and (d), M in (6.11) may be replaced by the

equivalent path M1 . If we then combine (6.11) and (6.14) we obtain

Ẽ(t) = E1(t) + E2(t) (6.15)

where Ẽ(t) is the theoretical error (which depends on S, λ, σ and n as well as t)
given by

Ẽ(t) = f̃(t)− f(t), (6.16)

E1(t) =
1

2πi

∫

M1

Qdz

enz − 1
(6.17)

and

E2(t) =
1

2πi

∫

M2

Qdz

1− e−nz
(6.18)

Since <z > 0 on M1 it is reasonable to assume that E1 → 0 as n → ∞. In
fact, Talbot establishes in his paper that if n is large enough we have

|E1(t)| = O(n2 exp(hτ − b
√

τn + σt)), (6.19)

where h and b are constants and τ = λt, in a region U which consists of the
conjugate triangles ABC and ABD where C is the point z = 2πi and D is the
point z = −2πi. If M1 is taken to lie inside U (see figure 6.1) then E1(t) → 0 as
n →∞. Similarly, by taking M2 to lie in a region U which is to the right of all
singularities of f̄(λS +σ) we can establish that E2(t) → 0 as n →∞. This may
have the effect of increasing h and decreasing b in (6.19) and hence increasing
E2 if f̄(λs + σ) has singularities near to B′.

Thus for fixed t, λ and σ,

Ẽ → 0 as n →∞. (6.20)

Clearly from (6.19) the rate of convergence and the magnitude of Ẽ will
depend greatly on τ .

In addition to the theoretical error we also have to ascertain the extent of the
computational round-off error. From (6.12) and (6.13) it is clear that because
of the exponential factor in Q, the first term in (6.13), namely

T0 =
λ

n
exp((λS(0) + σ)t)f̄(λS(0) + σ)S′(0), (6.21)
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Figure 6.1: The region U

is normally the largest or near-largest. Talbot found that because of heavy
cancellation in the summation that |f̃ | ¿ |T0|. Thus if the computer evaluates
T0 and its neighbouring values correct to c significant figures the rounding error
Er in f̃ is roughly given by

Er = O(10−cT0), (6.22)

all other round-off errors in the evaluation being negligible by comparison. Thus
the actual error in f̃ is

E = E1 + E2 + Er, (6.23)

and from (6.20) it follows that E = O(10−cT0) for sufficiently large n. This
gives an asymptotic order of magnitude for the error which cannot be improved
upon given a particular choice of λ and σ and contour B′.

6.3 Choice of Parameters

We shall include under this heading the choice of mapping function S(z) and
the parameters n, λ and σ. All that is required for the mapping function is that
it should satisfy the conditions (a) - (d). A possibility which Talbot did not
explore fully is

S(z) = az − b

z2 + 4π2
+ c.

He chose to consider the family of mappings

s = Sν(z) =
z

2

(
coth

z

2
+ ν

)
=

z

1− e−z
+ az, (6.24)

where ν is an arbitrary positive parameter and a = (ν − 1)/2.
The singularities of Sν(z) are simple poles at ±(2, 4, 6, · · · )πi, and those at ±2πi
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have residues ±2πi. Sν(z) maps the interval M(−2πi, 2πi) onto a contour

B′
ν : s = sν(θ) = α + νiθ, −π < θ < π, (6.25)

where z = 2iθ on M , and
α = α(θ) = θcotθ. (6.26)

The case ν = 1(a = 0) corresponds to the curve B′ of the previous section.
When ν 6= 1, B′

ν consists of B′ expanded vertically by a factor ν (see Figure
6.2) and there are advantages in taking ν > 1.
With the choice of Sν(z) given by (6.24) equation (6.9) now takes the form

f̃(t) =
λeσt

n

n−1∑

k=0

′ eατ {(νGk − βHk) cos νθkτ − (νHk + βGk) sin νθkτ} ,

(6.27)
where G, H and β are defined in (6.8) and (6.10).
We now give a strategy for the choice of the “geometrical” parameters λ, σ, ν for
given f̄(s), t, and computer precision c (as defined by (6.22)) and the selection
of n for prescribed accuracy. First, we note that

1. If f̄(s) has no singularities in the half-plane <s > 0, then the inverse f(t)
may be expected to be O(1), since B may be taken as the imaginary axis,
possibly indented, and condition (ii) implies that |f̄(s)| → 0 at both ends
of B.
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2. If f̄(s) has singularities in the half-plane <s > 0 and p̂ is their maximum
real part, then f(t) = ep̂tL−1f̄(s+ p̂), where f̄(s+ p̂) is of the type referred
to in statement 1 (above), so that f(t) is of order O(ep̂t), p̂ > 0.

Now suppose that the singularities of f̄(s) are at sj = pj + iqj and, as above,
let

p̂ = max
j

pj . (6.28)

Next, write
σ0 = max(0, p̂), (6.29)

and apply an initial shift σ0 to f̄(s). Then the the resulting function

f̄0(s) = f̄(s + σ0), (6.30)

is always of type 1. Talbot’s strategy was to produce an absolute error in f̃0(t)
of order 10−D, where D is specified, which produces a like error in f̃(t) if f̄(s) is
of type 1 and D correct significant digits if f̄(s) is of type 2. By the application
of the shift σ0 the singularities of f̄0(s) will be at

s′j = sj − σ0 = p′j + iqj , p′j = pj − σ0 ≤ 0. (6.31)

The strategy as applied to f̄0(s) will involve a further shift, call it σ′ (which
may be zero) making a total shift σ such that

σ = σ′ + σ0. (6.32)

After applying the initial shift σ0 the next step is to find the “dominant” sin-
gularity of f̄(s), assuming that there are some complex singularities. If sj is
one of these, with qj > 0, then the radius from the origin to the corresponding
s′j meets B′ at a point where the ordinate is θj = arg s′j . Thus s′j is situated
(qj/θj) times as far out as that point, and we define the dominant singularity
sd to be the one for which this ratio is greatest, i.e. sd = pd + iqd satisfies

qd

θd
= max

qj>0

qj

θj
, (6.33)

where
θj = arg s′j . (6.34)

If, however, all the singularities are real then they do not affect the choice of
λ, σ, ν and there is no need to find a dominant singularity for this purpose
although it is convenient to write qd = 0 and θd = π in this case.
It follows from (6.22), because of the factor T0, that the round-off error is linked
to

ω = (λ + σ′)t, (6.35)

where σ has been replaced by σ′, as explained. Talbot asserts that experiments
have shown that a correct choice of ω is vital for an efficient strategy and also
that the optimum strategy depends on the value of v, where

v = qdt. (6.36)



128 CHAPTER 6. THE METHOD OF TALBOT

There are two distinct cases to consider.

Case 1. v ≤ ωθd/1.8. (6.37)

In this situation we use only the initial shift σ0 and a scaling factor λ but do
not expand B′; we take

λ = ω/t (τ = ω),
σ = σ0 (σ′ = 0),
ν = 1 (a = 0),



 (6.38)

and note that with this choice (6.35) is satisfied. Case 1 always occurs when
the singularities of f̄(s) are all real.

Case 2 . v > ωθd/1.8. (6.39)

In this case we use the expanded contour B′
ν , as shown in Fig. 6.2. With φ as

defined in the figure,
pd − σ =

qd

ν
cot φ. (6.40)

If λν is the value of λ which would bring sd − σ just onto B′
ν then

λν = qd/νφ. (6.41)

If we define κ to be the ratio λ/λν , which quantifies how far s∗d is inside B′
ν

then
κ = νλφ/qd. (6.42)

Finally, if we regard ω, φ, κ as three new parameters we can solve (6.35), (6.40)
and (6.42) for λ, σ, ν and obtain

λ = κqd/νφ, σ = pd − qd

ν
cot φ, ν = qd

(
κ

φ
− cot φ

)/ (ω

t
+ σ0 − pd

)
.

Talbot remarks that better results are obtained if we replace pd by p̂ (thus
ensuring σ′ > 0) in which case our formulae in Case 2 become

λ = κµ/φ,
σ = p̂− µ cot φ,
ν = qd/µ,



 (6.43)

where

µ =
(ω

t
+ σ0 − p̂

) /(
κ

φ
− cot φ

)
. (6.44)
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Satisfactory values of κ, φ and ω were found to be

κ = 1.6 + 12/(v + 25),
φ = 1.05 + 1050/ max(553, 800− v),
ω = min(0.4(c + 1) + v/2, 2(c + 1)/3).



 (6.45)

Finally, Talbot presents empirical criteria for choosing n to achieve D significant
figure accuracy (if p̂ > 0) or error in the Dth decimal place (if p̂ ≤ 0). We refer
the reader to Talbot [227] for details. Suffice it to say that if all the singularities
are real then only moderate values of n are needed to determine f̃(t). In other
cases the value of n will increase as t increases and it is probably easier to use
an adaptive procedure for determining n.

6.4 Additional Practicalities

We list a number of points which were not discussed in previous sections.

1. Formula (6.27) requires the evaluation of cos νθkτ and sin νθkτ and this
can give rise to an appreciable error as the argument can be of order 102.
We write (6.27) as

f̃(t) =
λeσt

n
<

n−1∑
0

′akekiψ, (6.46)

where

ak = [eαt(ν + iβ)f̄(λsν + σ)]θ=θk
, ψ = τνπ/n. (6.47)

As the factors ekiψ in (6.46) satisfy the same recurrence relation as the
Chebyshev polynomials Tk(cos ψ), namely

e(k+1)iψ + e(k−1)iψ = 2 cos ψ · ekiψ, (6.48)

it follows that the sum in(6.46) can be evaluated by an algorithm like that
of Clenshaw for Chebyshev sums, viz.,

bn+1 = bn = 0,

bk = ak + ubk+1 − bk+2 (u = 2 cos ψ), k = n− 1, · · · , 1,
∑ ′ =

1
2
(a0 + ub1)− b2 + ib1 sin ψ.





(6.49)

In adopting the above algorithm we observe that the only trigonometrical
evaluations required are those for cos ψ and sin ψ and thus, as well as
increasing accuracy, this device saves time.

2. If f̄(s) = e−a/s/
√

s, for example, we have a function with an essential
singularity at s = 0. Thus Case 1 applies with λ = ω/t, τ = ω, σ = 0, ν = 1
and ω = 0.4(c+1) so that λ will be small when t is large. Analysis indicates
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that T0 is not now the largest term and the largest term increases rapidly
(almost exponentially) thus thwarting the general strategy regarding Er.
We can remedy the matter quite simply by setting a lower bound for λ,
say, ω = 0.4(c + 1)− 1 + at/30. This would also be the case for any other
transforms having e−a/s as a factor.
The problem does not arise if a < 0.

3. When there are complex singularities then the dominant singularity played
an essential role in the Talbot strategy. For given t, the larger the imag-
inary part qd the larger v = qdt becomes and this, in turn, means that n
will have to be larger to obtain D digit accuracy. If however the position
of sd is known exactly and qd/θd À like terms then n can be reduced sig-
nificantly by applying the subdominant singularity sd′ to determine the
parameters λ, σ, ν and n and taking account of sd by adding the residue
term

esdtf̄(sd) (6.50)

to f̃(t). We have to ensure, however, that with the chosen parameters, s∗d
lies outside B′

ν .

6.5 Subsequent development of Talbot’s method

Talbot’s method has been used by many authors to evaluate Laplace Transforms
which have occurred in their work. Comparison of Talbot’s method have also
been made with other available techniques. There have also been modifications
proposed which relate to the optimum choice of parameters which also includes
choice of contour.

6.5.1 Piessens’ method

Instead of Talbot’s contour B′
ν Piessens takes a contour C which consists of

the straight lines s = x − iβ, −∞ < x ≤ α; s = α + iy, −β ≤ y ≤ β;
s = x + iβ, −∞ < x < α where α and β are chosen so that C includes all
singularities of the function f̄(s) as in Figure 6.3 . We now have

f(t) =
1

2πi

∫

C
estf̄(s)ds,

=
∫ α

−∞
et(x−iβ)f̄(x− iβ)dx +

∫ β

−β

et(α+iy)f̄(α + iy)idy

+
∫ −∞

α

et(x+iβ)f̄(x + iβ)dx.

(6.51)

The first and third integrals combine to give (apart from a constant factor)

I1 = −
∫ α

−∞
ext[G(x + iβ) sin(βt) + H(x + iβ) cos(βt)]dx, (6.52)
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Figure 6.3: The Piessens contour

where
G(s) = <f̄(s), H(s) = =f̄(s). (6.53)

Likewise, the middle integral can be split into two parts I2 and I3 where, sup-
pressing the factor eαt ,

I2 =
∫ β

0

G(α + iy) cos(ty)dy, (6.54)

I3 = −
∫ β

0

H(α + iy) sin(ty)dy. (6.55)

Piessens makes the substitution u = xt in the integrand I1 to get

I1 = −t−1

∫ αt

−∞
eu[G(u/t + iβ) sin(βt) + H(u/t + iβ) cos(βt)]du, (6.56)

so that finally
f(t) = [eαt(I2 + I3) + I1]/π. (6.57)

For these integrals we cannot now use the trapezium rule, as Talbot had done,
but have to resort to quadrature rules which are specifically designed for oscil-
latory integrals - Piessens uses the Fortran Routine DQAWO to evaluate I1 and
DQAGI to evaluate I2 and I3 (see Piessens et al [185]). He also mentions that
it is better to keep the values of α and β small, especially for large t but at the
same time one has to ensure that singularities are not too close to the contour
C. He suggests taking

α = a + c1/t, β = b + c2/t, (6.58)

where c1 and c2 are constants such that 1 ≤ c1 = c2 ≤ 5, a is the smallest value
for which f̄(s) is analytic in |<s| < a and b is the smallest value for which f̄(s)
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is analytic in |=s| > b. When f̄(s) has branch points Piessens stresses the need
to choose the branch for which G and H are continuous along the contour as is
the case when

f̄(s) = (s2 + 1)−
1
2 , f(t) = J0(t). (6.59)

6.5.2 The Modification of Murli and Rizzardi

Murli and Rizzardi [159], instead of using the algorithm (6.49) to sum the series

n−1∑

k=1

ak sin kψ and
n−1∑

k=0

ak cos kψ,

employ the Goertzel-Reinsch algorithm which is based on the following result:-

Given ψ(6= rπ), r = 0,±1,±2, · · · and

Uj =
1

sin ψ

n−1∑

k=j

ak sin(k − j + 1)ψ, j = 0, 1, · · · , n− 1

Un = Un+1 = 0

then

Uj = aj + 2(cos ψ)Uj+1 − Uj+2, j = n− 1, n− 2, · · · , 0

and

S =
n−1∑

k=1

ak sin kψ = U1 sin ψ

C =
n−1∑

k=0

ak cos kψ = a0 + U1 cos ψ − U2.

The GR algorithm is:-

Define

∆ωUj = Uj+1 − ω ∗ Uj ,

where

ω = sgn(cos ψ),
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and

λ =
[ −4 sin2(ψ/2) if ω > 0

4 cos2(ψ/2) if ω ≤ 0

Set
Un+1 = ∆ωUn = 0.

do j = (n− 1), 0,−1

Uj+1 = ∆ωUj+1 + ωUj+2

∆ωUj = λUj+1 + ω∆ωUj+1 + aj

enddo
yielding

S = U1 sinψ

C = ∆ωU0 − (λ/2)U1

They also have some other modifications which are included in their published
routine Algorithm 682 in the ACM Transactions (TOMS). A condensed version
of their routine is provided at the URL
www.cf.ac.uk/maths/cohen/programs/inverselaplacetransform/ .

6.5.3 Modifications of Evans et al

Since it is possible to obtain good results for the evaluation of oscillatory inte-
grals over a finite range Evans [80] had the idea of choosing a contour which is
defined in terms of J piece-wise contours so that now

B′ =
J⋃
1

Bj , (6.60)

where
Bj : s = αj(τ) + iβj(τ), (6.61)

and αj(τ) may be any continuous function but βj(τ) is restricted to a linear
form βj(τ) = mjτ + cj . Thus, on a sub-contour Bj , we will need to evaluate

1
2πi

∫
f̄(α + iβ)et(α+iβ)(dα + idβ).

Writing f̄(s) = G(s) + iH(s), as before, this reduces to

1
2π

{∫
etα[G sin tβ + H cos tβ]dα +

∫
etα[G cos tβ −H sin tβ]dβ

}
.
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Now, substitution of the linear form for β gives

1
2π

∫

Bj

etα[(Gβ′ + Hα′) cos tc + (Gα′ −Hβ′) sin tc] cos mtτdτ

+
1
2π

∫

Bj

etα[(Gα′ −Hβ′) cos tc− (Gβ′ + Hα′) sin tc] sin mtτdτ,

(6.62)

and thus the integral over the sub-contour involves two standard oscillatory
integrals. Evans points out an advantage of taking the contour to be piece-wise
linear as the same G and H values can be used in the two integrals in (6.62)
and, if the contour is symmetrical about the x-axis the first and last sections of
the contour will run parallel to the real axis and will not be oscillatory. Hence
for these sections a general purpose quadrature rule, such as that of Clenshaw-
Curtis [40] will be viable. The term etα → 0 as α → −∞ and this ensures
that the integration need only be performed over a limited section of these
parallel contours. In fact if we curtail the integration when α = −32/t we are
guaranteed 14 figure accuracy. Evans proposes four contours which can be used
for comparison purposes. The first consists of the sub-contours

B1 : s = x− ib1, −∞ < x < a1,

B2 : s = x + ib1(x− a0)/(a0 − a1), a1 ≤ x ≤ a0,

B3 : s = x + ib1(x− a0)/(a1 − a0), a0 ≥ x ≥ a1,

B4 : s = x + ib1, a1 > x > −∞.

The second contour is the contour B′
ν used by Talbot, the third is given by

α = c− b

4(π2 − τ2)
, β = 2aτ

(which was suggested as a possibility by Talbot but not used) and, finally,

α = c− aτn, β = bτ,

where the constants are chosen to correspond with a0, a1 and b1 for the piece-
wise straight line contour. Thought has to be given to the choice of these
quantities as one needs the contour to be sensibly positioned in relation to the
dominant singularity.
Evans points out that there is a significant advantage in choosing a piece-wise
linear contour as it makes it easy to automate the process. This can be done in
three steps:-

(i) Order the poles into ascending argument (after first arranging for all the
poles to lie just above or on the real axis).

(ii) Compute the gradients of the lines joining successive points in the ordered
list from step (i).
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Figure 6.4: The Evans contour

(iii) Scan through the list of gradients starting from the positive real axis. If a
gradient is greater than its predecessor then move on to the next gradient,
otherwise, reject the pole at the lower end of the line as, for example, A
in Fig. 6.4 . The process is repeated until there are no rejections.

We have effectively found an “envelope” for the poles and we complete the
process by adding a small distance ε to the real and imaginary parts of the
accepted points so that the final contour consists of line segments which are
just to the right of the “envelope” and thus the contour will contain all the
poles. The contour is started by a leg running parallel to the real axis from −∞
to the pole with least imaginary part and ends with a leg from the pole with
maximum imaginary part to −∞ which is also parallel to the axis. If the poles
are all real then a contour similar to that of the Piessens contour C is used.
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In a subsequent development Evans and Chung [82] employ ‘optimal contours’
C to deform the Bromwich contour. One choice of C, which may not be optimal,
possesses the following properties:-

(i) C consists of two branches C1 and C2 where C1 lies in the upper half-plane
and C2 in the lower half-plane and the two branches meet at only one
point on the real axis (<s = a). The contour C is to be traversed in an
anticlockwise manner.

(ii) Both C1 and C2 extend to infinity in the half-plane <s ≤ a.

(iii) There may be poles of f̄(s) to the right of C but all essential singularities
and branch points of f̄(s) lie to the left of C with no poles on C.

Evans and Chung note that if f̄(s) is real when s is real and C satisfies the
conditions (i) and (iii) and is symmetrical about the real axis then

1
2πi

∫

C
etsf̄(s)ds =

1
π
=

∫

C1
etsf̄(s)ds,

where C1 is the upper branch of C. They then set about finding an optimal
contour for ∫

C
etsf̄(s)ds

by assuming that the oscillation in the integrand comes mainly from the factor
ets where t is fixed and positive. With s = α + iβ we have

ets = et(α+iβ) = etαeitβ ,

and by setting
tβ = constant,

we can eliminate the oscillation. The steepest curves are thus the horizontal
lines β= constant. As the contour C1 must start on the axis the horizontal
line cannot be used on its own without the addition of a curve of finite length
running from the axis and joining it at some point. The authors took the quarter
circle s = a joining on to the line =s = a to constitute the optimal contour (see
Figure 6.5). Thus in polar coordinates we have

C1 : r =
{

a, a ≤ θ ≤ π/2;
a/ sin θ, π/2 < θ < π.

(6.63)

An appropriate choice for a is
a = π/2t (6.64)

since, as we move on the circular arc the oscillatory factor eitβ changes only
through a quarter of a cycle and is effectively non-oscillatory over this arc.
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To avoid the contour passing through some singularities Evans and Chung
introduce a real shift parameter σ defined by

σ = max<sk + ε

where the maximum is taken over all singularities sk of f̄(s) and ε = 1/t if there
is a singularity lying exactly on C and ε = 0 otherwise. We can now employ the
result (2.22) of Chapter 2 to obtain

f(t) =
etσ

π
=

∫

C
f̄(s + σ)etsds +

∑

k

Rk (6.65)

where Rk denotes the residue at the pole sk of the function etsf̄(s).

6.5.4 The Parallel Talbot Algorithm

The previous implementations of Talbot’s method have been designed for se-
quential computers. de Rosa et al [66] state that these have been efficient for
moderate t as few (Laplace transform) function evaluations are needed. For
large t thousands of function evaluations may be required to ensure high accu-
racy of the result. They produce a parallel version of Talbot’s method to achieve
a faster inversion process.

A core feature of their approach is the incorporation of the Goertzel-Reinsch
algorithm used by Murli and Rizzardi [159]. de Rosa et al assume that p parallel
computers are available, where for simplicity n is a multiple of p, and they divide
S and C into p independent subsequences. These are computed independently
by each processor and a single global sum is all that is needed to accumulate
the p local partial results. Thus if

np = n/p
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and we set

Φrj+1
rj

=
rj+1−1∑

k=rj

ak sin kψ (6.66)

Γrj+1
rj

=
rj+1−1∑

k=rj

ak cos kψ (6.67)

(6.68)

where rj = jnp for j = 0, 1, · · · , p− 1
then

S =
p−1∑

j=0

Φrj+1
rj

(6.69)

C =
p−1∑

j=0

Γrj+1
rj

(6.70)

The task of processor ‘j’ is then to compute the sums in (6.66) and (6.67). de
Rosa et al note that if the sums to be computed are

Φn
j =

n−1∑

k=j

ak sin kψ

Γn
j =

n−1∑

k=j

ak cos kψ, j = 0, 1, · · · , n− 1

and we set

An
j =

n−1∑

k=j

ak sin(k − j)ψ

Bn
j =

n−1∑

k=j

ak cos(k − j)ψ

then

Φn
j = An

j cos jψ + Bn
j sin jψ

Γn
j = Bn

j cos jψ −An
j sin jψ, j = 0, 1, · · · , n− 1

6.6 Multi-precision Computation

We have already remarked that inversion of the Laplace transform is an ill-
conditioned problem. This certainly manifests itself in numerical methods
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with loss of numerical digits brought about by cancellation. As with other
ill-conditioned problems, such as the solution of the simultaneous linear equa-
tions Hx = b where H is the Hilbert matrix with elements hij = 1/(i + j − 1),
accurate answers are obtainable for x if we use extended precision arithmetic.

Abate and Valkó have adopted this brute force computational approach to
obtain what they term the fixed-Talbot method. Clearly, as they do not have
to concern themselves with having to achieve the maximum computational effi-
ciency by, for example, using the Goertzel-Reinsch algorithm, they were able to
use a shorter program. In fact, their Mathematica program consisted of just 10
lines. The basis of their formulation is, like Talbot, that the inverse transform
is given by

f(t) =
1

2πi

∫ c+i∞

c−i∞
estf̄(s)ds. (6.71)

The contour is deformed by means of the path

s(θ) = rθ(cot θ + i), −π < θ < π, (6.72)

where r is a parameter. This path only involves one parameter whereas Talbot’s
consisted of two. Integration over the deformed path yields

f(t) =
1

2πi

∫ π

−π

ets(θ)f̄(s(θ))s′(θ)dθ. (6.73)

Differentiating (6.72) we have s′(θ) = ir(1 + iσ(θ)), where

σ(θ) = θ + (θ cot θ − 1) cot θ. (6.74)

We find
f(t) =

r

π

∫ π

0

<
[
ets(θ)f̄(s(θ))(1 + iσ(θ))

]
dθ (6.75)

Approximation of the integral in (6.75) by the trapezoidal rule with step size
π/M and θk = kπ/M yields

f(t,M) =
r

M

{
1
2f(r)ert +

M−1∑

k=1

<[ets(θk)f̄(s(θk))(1 + iσ(θk))]

}
. (6.76)

Based on numerical experiments Abate and Valkó chose r to be

r = 2M/(5t), (6.77)

which results in the approximation f(t,M) being dependent on only one free
parameter, M . Finally to control round-off error they took the number of
precision decimal digits to be M. An example of their Mathematica program is
provided at the URL
www.cf.ac.uk/maths/cohen/programs/inverselaplacetransform/ .
Valkó and Abate [238] have used the above algorithm as the inner loop of a
program which inverts two-dimensional transforms — see Chapter 7.



Chapter 7

Methods based on the
Post-Widder Inversion
Formula

7.1 Introduction

In Chapter 2 we established the Post-Widder formula for the inversion of Laplace
Transforms. One of the difficulties of using this particular approach is the need
to differentiate f̄(s) a large number of times especially when it is a complicated
function. However, with the general availability of Maple and Mathematica
this isn’t quite the headache it used to be. The other major problem with this
approach to inversion lies with the slow convergence to the limit. To illustrate
this point we have tabulated in Table 7.1

fn(t) =
(−1)n

n!

(n

t

)n+1

f̄ (n)
(n

t

)
, (7.1)

where f̄(s) = 1/(s + 1) for various n, t. Clearly when n = 50 the approxima-
tion for f(1) is in error by about 1% while for f(5) the error is about 15%.
Because of the slow convergence of the sequence fn(t) it is natural to seek
extrapolation methods to speed up convergence. As we point out in the sec-
tion on Extrapolation in Chapter 11 there is no magic prescription which will
enable one to sum all convergent sequences. Perhaps the most robust tech-
nique for achieving this is the d(m) -transformation as one can vary m, if need
be, to obtain a more appropriate extrapolation technique. For the above ex-
ample m = 1 was found to be sufficient to produce satisfactory results when
using the Ford-Sidi W (m) algorithm with np=3 (a program can be downloaded
from www.cf.ac.uk/maths/cohen/programs/inverselaplacetransform/). The ρ-
algorithm was also very successful and produced results for f(1) and f(5) which
were correct to 18 and 12 decimal places respectively using only 13 function
values. With 19 function values we also obtained similar accuracy for f(5).



142 CHAPTER 7. POST-WIDDER

n fn(1) fn(5)
1 0.250000000 0.027777 · · ·
2 0.296296 · · · 0.023323 · · ·
5 0.334897 · · · 0.015625000
10 0.350493 · · · 0.011561 · · ·
20 0.358942 · · · 0.009223 · · ·
50 0.364243 · · · 0.007744 · · ·

Exact f(t) 0.367879 · · · 0.006737 · · ·

Table 7.1: Crude approximations for f(t) when f̄(s) = 1/(s + 1).

n fn(2)
1 0.0894427191
2 0.0883883476
3 0.0920292315
4 0.1001758454
5 0.1096308396
6 0.1188238282
7 0.1271993514
8 0.1346391708
9 0.1411901193
10 0.1469511888
11 0.1520292063

Table 7.2: Crude approximations for f(t) when f̄(s) = 1/
√

s2 + 1.

Moreover, we could compute f(40) by this method correct to 24 decimal places.
Of course, all calculations needed were performed using quadruple length arith-
metic (approximately 32-digit decimal arithmetic) in order to achieve the re-
quired accuracy. For general f(t) we might not have so many terms of the
sequence available because of the difficulty in differentiating f̄(s).

Example 7.1 Given f̄(s) = 1/(s2 + 1)1/2 estimate f(t) for t = 2.
We have

f̄ ′(s) = −s/(s2 + 1)3/2,

and thus
(s2 + 1)f̄ ′(s) + sf̄(s) = 0.

This last equation can be differentiated n times by Leibnitz’s theorem to get

(s2 + 1)f̄ (n+1)(s) + (2n + 1)sf̄ (n)(s) + n2f̄ (n−1)(s) = 0.

If we now substitute s = n/t we can, for each n, compute the terms fn(t) given
by (7.1). These are given in Table 7.2 .
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It is difficult to decide whether this data is converging but if, as before, we
apply the ρ-algorithm we obtain the estimate 0.22389079 for f(2). The exact
answer is J0(2) = 0.2238907791 · · · .
On a parallel computer it would of course be possible to obtain estimates for
several values of t simultaneously the only limitation being numerical instability
caused by loss of significant digits. A different approach to applying the Post-
Widder formula has been given by Jagerman [116], [117].

7.2 Methods akin to Post-Widder

Davies and Martin [60] give an account of the methods they tested in their
survey and comparison of methods for Laplace Transform inversion. Their con-
clusions were that the Post-Widder method seldom gave high accuracy — as
we confirmed with the examples in the previous section — but, apart from the
ε -algorithm which they mention, there were very few extrapolation techniques
which were well-known at that time. The power of extrapolation techniques is
demonstrated convincingly by the examples we give in this and other chapters.
Davies and Martin in their listing of methods which compute a sample give the
formula

In(t) =
∫ ∞

0

δn(t, u)f(u)du, (7.2)

where the functions δn(t, u) form a delta convergent sequence, and thus In(t)
tends to f(t) with increasing n. The Post-Widder formula may be thought of
as being obtained from the function

δn(t, u) = (nu/t)n exp(−nu/t)/(n− 1)! .

Using a similar approach ter Haar [228] proposed the formula

f(t) ≈ t−1f̄(t−1), (7.3)

and another variant due to Schapery [205] is

f(t) ≈ (2t)−1f̄((2t)−1). (7.4)

As these last two formulae are essentially just the first terms in a slowly conver-
gent sequence we cannot really expect them to provide accurate results. Gaver
[93] has suggested the use of the functions

δn(t, u) =
(2n)!

n!(n− 1)!
a(1− e−au)ne−nau, (7.5)

where a = ln 2/t, which yields a similar result to (7.1) but involves the nth finite
difference ∆nf̄(na), namely,

f(t) = lim
n→∞

In(t) = lim
n→∞

(2n)!
n!(n− 1)!

a∆nf̄(na). (7.6)

.
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n In

1 0.237827565897
2 0.288305006172
3 0.310487554891
4 0.322983551879
5 0.331006106802
6 0.336594259156
7 0.340710666619
8 0.343869331482
9 0.346369783782
10 0.348398408180
11 0.350077271302

Table 7.3: Successive Gaver iterates for f(t) when f̄(s) = 1/(s + 1).

As with the Post-Widder formula the convergence of In(t) to f(t) is slow. How-
ever, we can try and speed things up by application of extrapolation techniques.
Gaver has shown that (In(t)− f(t)) can be expanded as an asymptotic expan-
sion in powers of 1/n which gives justification for using this approach. Stehfest
[224], [225] gives the algorithm

f(t) ≈ a
N∑

n=1

Knf̄(na), a = ln 2/t, (7.7)

where N is even and

Kn = (−1)n+N/2

min(n,N/2)∑

k=[(n+1)/2]

kN/2(2k)!
(N/2− k)!k!(k − 1)!(n− k)!(2k − n)!

,

and this formula has been used by Barbuto [12] using a Turbo Pascal 5.0 pro-
gram to determine the numerical value of the inverse Laplace transform of a
Laplace-field function. Davies and Martin [60] report that this method gives
good accuracy on a wide range of functions. We have used the Gaver formula
(7.6) to estimate f(t) given that f̄(s) = 1/(s + 1) and we obtained the approx-
imations (Table 7.3) for In(t) when t = 1. We remark that the term In(t) in
(7.6) can be obtained by means of the recursive algorithm

G
(n)
0 = naf̄(na), n ≥ 1

G
(n)
k =

(
1 + n

k

)
G

(n)
k−1 − n

k G
(n+1)
k−1 , k ≥ 1, n ≥ k

In(t) = G
(n)
n


 (7.8)

— see Gaver [93] and also Valkó and Abate [237]. As before, we have used
quadruple length arithmetic to compute the data in the above table (which gives
the rounded values correct to 12 decimal places). Again, it is difficult to decide
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what the sequence is converging to (if it is converging at all). Application of the
ρ-algorithm to the data in the above table yielded the value 0.3678794411708 · · ·
which is the correct value of e−1 to 11 significant figures. When t is increased we
have to increase n in order to achieve the same sort of accuracy but this leads to
loss of digits in In due to cancellation so that we cannot get even 6 significant
digit accuracy for t > 15. Of course, we might be less successful with the
extrapolation if we are given some other function f̄(s) but could try some other
extrapolation technique such as the Ford- Sidi W (m) algorithm. Nevertheless,
where it is difficult to compute the derivatives of f̄(s), and this is frequently the
case, the Gaver method is an attractive alternative to Post-Widder.
Another approach which does not seem to have been implemented is to use the
inversion formula of Boas and Widder [21]

f(t) = lim
k→∞

fk(t),

where

fk(t) =
tk−1

k!(k − 2)!

∫ ∞

0

∂k

∂sk
[s2k−1e−ts]f̄(s)ds. (7.9)

If parallel computation facilities are available fk(t) can be computed simultane-
ously for each k = 1, 2, · · · , the integral being determined using methods given
in Chapter 11, and then we can extrapolate the sequence to get f(t). Of course,
we can still compute the terms of the sequence sequentially but this will be a
more long-winded process. A problem which is certain to manifest itself is that
of loss of significant digits as the k-th derivative of s2k−1e−ts is composed of
terms with large coefficients which are alternatively positive and negative.

Zakian [259] takes δn(t, u) to be an approximation to the scaled delta func-
tion δ((λ/t)− 1) which is defined by

∫ T

0

δ

(
λ

t
− 1

)
dλ = t, 0 < t < T, (7.10)

δ

(
λ

t
− 1

)
= 0, t 6= λ. (7.11)

If f(t) is a continuous function it satisfies

f(t) =
1
t

∫ T

0

f̄(λ)δ
(

λ

t
− 1

)
dλ, 0 < t < T. (7.12)

Zakian asserts that δ((λ/t)− 1) can be expanded into the series

δ

(
λ

t
− 1

)
=

∞∑

i=1

Kie
−αiλ/t, (7.13)

and his δn(t, u) corresponds to the first n terms of the series in (7.13). The reader
can consult subsequent papers [260] and [265] to find out how the quantities Ki

and αi were computed.

7.2 METHODS AKIN TO POST-WIDDER.
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7.3 Inversion of Two-dimensional Transforms

Valkó and Abate [238] have extended their approach to multi-precision inversion
of Laplace transforms in one variable — see Abate and Valkó [2] — to obtain
two methods for the inversion of 2-dimensional Laplace transforms. Both these
methods can be considered as the concatenation of two one-dimensional meth-
ods.

The Gaver-Rho fixed Talbot method
Suppose that we are given a two- dimensional transform f̄(s1, s2) and we want
to determine the original function f at (t1, t2). Then, as our first step, we invert
the “s2” variable to get

f̄(s1, t2) = L−1{f̄(s1, s2)}. (7.14)

Our next step is to invert the “s1” variable to obtain

f(t1, t2) = L−1{f̄(s1, t2)}. (7.15)

Valkó and Abate accomplish the inversion of (7.15) by using the Gaver algo-
rithm accelerated by the ρ-algorithm for given t1, t2 and a sequence of s1 values.
Note that, for each s1 value to be computed, we require the numerical inversion
of the s2 variable which is defined by (7.14) and this is achieved by means of the
fixed Talbot algorithm (see Chapter 6). Valkó and Abate give a Mathematica
program in their paper (called L2DGWRFT).

The Gaver-Rho2 method
The construction of this method is the same as the Gaver-Rho fixed Talbot
method except that the inner loop is also evaluated by the Gaver-Rho algorithm.
A Mathematica program, called L2DGWRGWR, is also given by Valkó and
Abate.



Chapter 8

The Method of
Regularization

8.1 Introduction

The equation

f̄(s) =
∫ ∞

0

e−stf(t)dt, (8.1)

is an example of a Fredholm integral equation of the first kind and another way
of looking at the problem of finding L−1{f̄(s)} is to use a technique for solving
this type of integral equation. The problems associated with solving equations
of this type can be seen from the following example considered by Fox and
Goodwin [87], namely,

∫ 1

0

(x + y)φ(y)dy = g(x). (8.2)

For a solution to be possible the right hand side must be of the form g(x) =
a + bx. Suppose

g(x) = x.

Fox and Goodwin note that a solution of the integral equation is

φ1(x) = 4− 6x,

and, by substitution, this is clearly seen to satisfy (8.2). Unfortunately, this
solution is not unique as

φ2(x) = 3− 6x2,

also satisfies (8.2) and so does every linear combination of the form

αφ1(x) + (1− α)φ2(x).
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Additionally, if ψ(x) is any other function of x which is linearly independent of
φ1(x) and φ2(x) and which satisfies

∫ 1

0

(x + y)ψ(y)dy = 0,

then
αφ1(x) + (1− α)φ2(x) + βψ(x),

is also a solution of the integral equation (8.2). Note that there are an infinity of
such functions ψ(x) as all we require is that ψ(x) is orthogonal to the functions
1 and x over [0, 1].
The situation is a little different with Laplace transform inversion as we have
already shown that if f(t) is a continuous function then its transform is unique.
We recall here that there could be instability, as mentioned in Chapter 2, if
f(t) is not a smooth function. However, there is no reason why the methods
applicable for this type of integral equation should not carry over to the case
of Laplace inversion and we proceed here to give the method of regularization
after giving some basic theory relating to Fredholm equations of the first kind.

8.2 Fredholm equations of the first
kind — theoretical considerations

The linear Fredholm equation of the first kind is defined by

∫ b

a

K(x, y)φ(y)dy = g(x), c ≤ x ≤ d, (8.3)

or in operator form
KΦ = g, (8.4)

where K(x, y) is the kernel of the integral equation, φ(x) is the function we
would like to determine and g(x) is a given function in a range (c, d), which is
not necessarily identical with the range of integration (a, b). As noted in the
previous section g(x) must be compatible with the kernel K(x, y). Also, if there
are an infinity of solutions of KΦ = 0, there cannot be a unique solution of (8.3).
From a numerical standpoint the worrying feature is that a small perturbation
in g can result in an arbitrarily large perturbation in φ even if a unique solution
of the integral equation exists. For if

hω(x) =
∫ b

a

K(x, y) cos ωy dy, c ≤ x ≤ d,

it follows from the Riemann-Lebesgue lemma that, as ω → ∞, we have
hω(x) → 0. Thus for ω sufficiently large hω(x) will be arbitrarily small and
if added to g will cause a change of cos ωy in φ, i.e., a change which can be of
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magnitude 1.
Given an integral equation of the form

∫ a

−a

K(x, y)φ(y)dy = g(x), (8.5)

where the kernel K is symmetric, i.e. K(x, y) = K(y, x) then from the Hilbert-
Schmidt theory of integral equations there exists eigenfunctions φn(y) which
satisfy the equation

∫ a

−a

K(x, y)φn(y)dy = λnφn(x), (8.6)

and form a complete orthonormal basis over [−a, a] and the eigenvalues λn are
real. Thus we can expand g(x) in the form

g(x) =
∞∑

n=0

βnφn(x), (8.7)

where
βn =

∫ a

−a

g(x)φn(x)dx. (8.8)

Since, also, we may expand φ(y) in the form

φ(y) =
∞∑

n=0

αnφn(y), (8.9)

where
αn =

∫ a

−a

φ(y)φn(y)dy. (8.10)

Substitution into (8.5) gives

βn = λnαn, all n, (8.11)

and thus we have

φ(y) =
∞∑

n=0

βn

λn
φn(y). (8.12)

The big difficulty relating to the above theory is how to compute the eigenfunc-
tions and eigenvalues. It is apposite here to consider an example of McWhirter
and Pike [154] which was concerned with the passage of light from a one-
dimensional space-limited object described by the object function O(y), |y| ≤
Y/2, through a lens of finite aperture to form a band-limited image I(x) which
is given by the equation

I(x) =
1
2π

∫ Ω

−Ω

dωe−iωx

∫ Y/2

−Y/2

eiωyO(y)dy, (8.13)

.
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i.e.

I(x) =
∫ Y/2

−Y/2

sin[Ω(y − x)]
π(y − x)

O(y)dy, (8.14)

where Ω is the highest spatial frequency transmitted by the lens. Given I(x)
it should in theory be possible to determine the object function O(y) from
which it was obtained. Practically this is not possible because a lens with finite
spatial frequency Ω has an associated resolution limit π/Ω which means that
an object of spatial extent Y can contain only a finite number S = Y Ω/π of
independent components or degrees of freedom — S is known as the Shannon
number in information theory. Relating this to the eigenfunction expansion
(8.12) it means that the terms for which n > Y Ω/π must be divided by an
extremely small number and so error in the value of αn will cause these terms
to diverge. Therefore these later terms must be omitted in order to get physically
meaningful results.

8.3 The method of Regularization

In this method it is assumed that a solution exists to the ill-posed problem (in
operator form)

KΦ = g, (8.15)

where now

KΦ ≡
∫ ∞

0

e−stf(t)dt,

and g ≡ f̄(s), <s > γ. The method of determining f(t) is to minimize the
quadratic functional

‖KΦ− g‖+ α‖LΦ‖, (8.16)

where ‖LΦ‖ is some linear operator and ‖ · · · ‖ denotes some appropriate norm.
This minimization problem is well-posed and has a unique solution for a value
of α which must be determined. Lewis [129] found that best numerical results
for solving the equation (8.3) were obtained using the zero-order regularization
method of Bakushinskii [11]. In relation to (8.3) the method consists of solving
the more stable Fredholm equation of the second kind

αφ(x) +
∫ 1

0

K(x, y)φ(y)dy = g(x), (8.17)

when K is symmetric, i.e. K(x, y) = K(y, x). In the event that K(x, y) is not
symmetric we form the symmetric kernel K∗(x, y) where

K∗(x, y) =
∫ d

c

K(θ, x)K(θ, y)dθ (8.18)
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and solve instead the integral equation

αφ(x) +
∫ d

c

K∗(x, y)φ(y)dy = G(x), (8.19)

where

G(x) =
∫ d

c

K(θ, x)f(θ)dθ.

We illustrate the method by applying it to the solution of the integral equation
(8.2). We form

αφ(x) +
∫ 1

0

(x + y)φ(y)dy = x, 0 ≤ x ≤ 1. (8.20)

for various values of α — see Churchhouse [37]. The integral in (8.7) can be
approximated by the trapezium rule so that for given x and α and step-length
h, where nh = 1, we have

αφ(x) + 1
2h

n−1∑

i=0

{(x + ih)φ(ih) + (x + [i + 1]h)φ([i + 1]h)} = x.

Setting x = 0, h, · · · , nh, in turn, we obtain a system of n + 1 simultaneous
linear equations in the n + 1 unknowns φ(0), φ(h), · · · , φ(nh), namely

αφ(rh) + 1
2h2

n−1∑

i=0

{(r + i)φ(ih) + (r + i + 1)φ([i + 1]h)} = rh, r = 0, 1, · · · , n.

The solution of these equations is given in Table 8.1 for various α and h = 0.1.
It can be seen that the results tend to φ(x) = 4 − 6x as α decreases and,

for a range of values of α are fairly consistent. When α is decreased further the
estimated values of φ̃(x) diverge from 4− 6x. This is a characteristic feature of
the method.

8.4 Application to Laplace Transforms

Suppose that in equation (8.1) we make the substitution

u = e−t,

then we will have transformed the integral into one over a finite range, namely

f̄(s) =
∫ 1

0

us−1f(− ln u)du, (8.21)

or, writing g(u) = f(− lnu), we have

f̄(s) =
∫ 1

0

us−1g(u)du. (8.21′)
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α φ̃(0) φ̃( 1
2 ) φ̃(1)

2−4 18.01681 2.89076 -12.23529
2−5 6.34789 1.31458 -3.71873
2−6 4.84588 1.11654 -2.61280
2−7 4.34352 1.05144 -2.24064
2−8 4.13180 1.02428 -2.08324
2−9 4.03405 1.01181 -2.01044
2−10 3.98703 1.00582 -1.97538
· · · · · · · · · · · ·
2−19 3.94126 1.00001 -1.94124
2−20 3.94122 1.00001 -1.94121
2−21 3.94120 1.00000 -1.94119
2−22 3.94119 1.00000 -1.94118
2−23 3.94118 1.00000 -1.94118

Table 8.1: Solution of
∫ 1

0
(x + y)φ(x) = x by regularization.

If we employ a Gauss-Legendre quadrature formula with N points to evaluate
this integral we obtain

f̄(s) =
N∑

i=1

αiu
s−1
i g(ui), (8.22)

— this equation would be exact if the integrand could be expressed as a polyno-
mial in u of degree 2N − 1 or less. If we substitute s = 1, 2, · · · , N we obtain
a system of N linear equations in the N unknowns αig(ui)

N∑

i=1

αiu
k
i g(ui) = f̄(k + 1), k = 0, 1, · · · , N − 1. (8.23)

These equations have a unique solution as the determinant of the coefficients is
the Vandermonde determinant which is non-zero as the ui are distinct. Further,
as we can determine the Christoffel numbers αi from (11.25) — or alternatively
by consulting the appropriate table in Abramowitz and Stegun [5] — we can
compute the quantity g(ui) and hence f(t) for t = − ln ui. Because of the
structure of the coefficient matrix an efficient way of computing the solution of
the equations is via polynomial interpolation — see Golub and van Loan [101].
As mentioned in an earlier chapter the inversion of the Laplace transform is
an ill-conditioned problem. This manifests itself in the solution of the matrix
equation (8.23) which we shall write as Ax = b where A is the N×N matrix with
aij = αiu

j−1
i . Tikhonov [229], [230] tackles the solution of the ill-conditioned

equations by attempting another problem, the minimization of

R(x) = 〈Ax− b, Ax− b〉+ h(x), (8.24)



8.4. APPLICATION TO LAPLACE TRANSFORMS 153

where 〈·, ·〉 denotes vector inner product and h(x) is a function which is chosen
to ensure the stability of the equation when minimizing over x. Typically,
h(x) = λ||Bx||2, where λ > 0 is the regularization parameter and B is the
regularization operator. Note that if we were to take h(x) = 0 we would be
minimizing a quadratic form and would find the solution to be

AT Ax = AT b.

The matrix of coefficients is now symmetric but may be even more ill-conditioned
than the original A. If we have a priori knowledge of a vector c which is a first
approximation to x then we can take

h(x) = λ〈x− c,x− c〉, (8.25)

where λ > 0. The minimum value of x is given by

x(λ) = (AT A + λI)−1(AT b + λc). (8.26)

If λ is small then we are close to the value of A−1b but AT A + λI is still
ill-conditioned. Increasing λ alleviates the ill-conditioning but decreases the
accuracy of the solution. The choice of λ is very much hit-and-miss but the
validity of the answers can be obtained by checking the goodness of fit

‖ Ax− b ‖ .

A more scientific approach is to choose a first approximation c by initially using
a 5-point Gaussian quadrature formula and then determining the fourth degree
polynomial which passes through the points (ui, g(ui)). This polynomial can be
used to get starting values of g at the abscissae of a 7-point quadrature formula.
This will give c. We can then use the iterative scheme

x0 = c,

xn+1 = (AT A + λI)−1(AT b + λxn), (8.27)

to determine x, which will give estimates for g(ui) and, equivalently, f(− ln ui).
One snag about this approach is that because of the distribution of the zeros
ui the arguments of the function f will be bunched about t = 0. One way of
avoiding this is to employ the result (1.5) so that in place of f̄(1), f̄(2), · · · we
use the values f̄(1/a), f̄(2/a), · · · , a > 0 and solve the approximation formula

N∑

i=1

αiu
k−1
i f(−a ln ui) =

1
a
f̄(k/a), k = 1, 2, · · · , N. (8.28)

The arguments of the function f are now more scattered if a > 1 but the
coefficient matrix and its inverse are the same as before and can be solved in
the same way.
In the above regularization approach the integration has been carried out by
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transforming the infinite integral to a finite integral and applying a Gauss-
Legendre quadrature formula to estimate the finite integral. As we mentioned
in Chapter 3 a more natural method of attacking the problem, especially in view
of the exponential weight function, is via Laguerre polynomials and this is the
approach adopted by Cunha and Viloche [54]. In the notation of their paper
let X = L2

w(R+) be the weighted Lebesgue space associated with w(t) = e−t,
Y = L2([c, d]), d > c > 0 and A : X → Y the Laplace transform operator

(Ax)(s) =
∫ ∞

0

e−stx(t)dt = ȳ(s). (8.29)

Their problem was to determine A+ȳ where A+ is the generalized inverse of A
and they were particularly interested in the case where ȳ is not known explicitly
and we only have available perturbed data ȳδ satisfying

‖ȳ − ȳδ‖ < δ. (8.30)

Cunha and Viloche employ the implicit successive approximation method of
King and Chillingworth [121]

x(k) = (λI + A∗A)−1(λx(k−1) + A∗yδ), λ > 0, (8.31)

where A∗ is the adjoint operator of A which is defined in this case by

(A∗v)(t) = et

∫ d

c

e−tsv(s)ds,

— the above numbered equation should be compared to (8.27). If Li(t) denotes
the Laguerre polynomial of degree i which satisfies

∫ ∞

0

e−tLi(t)Lj(t)dt = (i! j!)δij ,

where δij = 0, i 6= j and δii = 1, and we define the approximation

xN =
N∑

i=1

aiLi(t),

with the property that

〈(λI + A∗NAN )x(k+1)
N , Lj〉 = 〈λx(k)

N + A∗N ȳδ, Lj〉, j = 0, · · · , N, λ > 0,

where 〈·, ·〉 denotes inner product in X. Using the fact that

L̄i(s) =
1
s

(
1− 1

s

)i

we can construct the matrix M whose elements Mij are given by

Mij =
∫ d

c

L̄i(s)L̄j(s)ds =
d̂k − ĉk

k
,
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where d̂ = 1− 1/d, ĉ = 1− 1/c and k = i + j + 1. Next define a vector f whose
components are

fi =
∫ d

c

yδ(s)L̄i(s)ds.

Then the variational formulation of the implicit scheme (8.31) will be

(λI + M)a(k) = λa(k−1) + f . (8.32)

For a given λ > 0 Cunha and Viloche give the following procedure for finding
the solution:-

1. Do the Cholesky decomposition LLT = M + λI — see Golub and van
Loan [101].

2. Set a(0) = 0 and solve the system LLT a(k) = λa(k−1) + f , k = 1, 2, · · · .

They point out that regularization is an important feature of the process and
increasing the value of N makes the condition number of M very large. They
quote a figure of O(1019) when N = 15. Their paper gives an error bound
estimate and the results of some numerical experiments with “noisy” data.
Hanke and Hansen [109] have given a survey of regularization methods for
large scale problems and Hansen [110] presents a package consisting of 54 Mat-
lab routines for analysis and solution of discrete ill-posed problems many of
which, like Laplace inversion, arise in connection with the discretization of
Fredholm integral equations of the first kind. These can be downloaded from
www.netlib.org/numeralgo/na4 . The website of Reichel [194] contains a sub-
stantial amount of material about recent developments in the field of regu-
larization. One of these developments is that of multi-parameters where the
minimization function takes the form

k

(
||Ax− b||2 +

k∑

i=1

λi||Bix||2
)

,

where k ≥ 2 and λi > 0, i = 1, · · · , k are regularization parameters and Bi are
regularization operators. See, for example, Brezinski et al [27].



Chapter 9

Survey Results

9.1 Cost’s Survey

The earliest survey of numerical methods for the evaluation of Laplace trans-
forms is probably that of Cost [49]. This listed several methods which were
essentially special cases of the Post-Widder formula and the series expansion
methods of Papoulis and Lanczos in terms of Legendre, Chebyshev and Laguerre
polynomials, discussed in Chapter 3. Additionally, he gives a least squares for-
mulation suggested by Schapery [205] (and independently by Rizzo and Shippy
[196]) which assumes that f(t) has an expansion of the form

f(t) = A + Bt +
n∑

k=1

ake−bkt,

where the exponents bk are chosen to suit the expected form of the function.
The Laplace transform is

f̄(s) =
A

s
+

B

s2
+

n∑

k=1

ak

s + bk
,

so that
B = lim

s→0
s2f̄(s).

The ak and A can be found by assigning appropriate values to s — the values bk

and one other value are suggested — and solving a system of linear equations.
Cost applies these methods to two engineering problems and draws several con-
clusions, some of which are a little dubious as the exact solutions to the two
problems are not known. He does make the very valid point that methods such
as those of Papoulis and Lanczos have a serious drawback as they require the
evaluation of f̄(s) at prescribed values of s which may not be readily available.
Piessens [181] and Piessens and Dang [184] provide bibliographies of relevant
material published prior to 1975 on numerical methods and their applications
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and theoretical results. At an early stage, in view of the vast amount of refer-
ences one can download from the World Wide Web, this author abandoned the
idea of including all material which applied numerical methods to find inverse
Laplace Transforms and only a selection of the more important methods are
given in the Bibliography. However a comprehensive list compiled by Volká and
Vojta can be found at the website [239].

9.2 The Survey by Davies and Martin

Perhaps the most comprehensive survey available is that of Davies and Martin
[60]. They take a set of 16 test functions f̄i(s), i = 1, 2, · · · , 16 with known
inverse transforms fi(t) which were selected to reflect a variety of function
types. For example, some functions are continuous and have the property
that f̄(s) → sα as s → ∞. Others are continuous but there is no value α
for which f̄(s) → sα as s → ∞ whilst other functions have discontinuities (see
Table 10.1). In order to assess the accuracy of their numerical solutions they
presented two measures:-

(i) L =

(
30∑

i=1

(f(i/2)− f̂(i/2))2/30

)1/2

, (9.1)

(ii) L′ =

(
30∑

i=1

(f(i/2)− f̂(i/2))2e−i/2
/

(
30∑

i=1

e−i/2

))1/2

. (9.2)

where f̂(t) denotes the computed value of f(t). L gives the root-mean square de-
viation between the analytical and numerical solutions for the t values 0.5, 1, 1.5,
· · · , 15 while L′ is a similar quantity but weighted by the factor e−t. Davies
and Martin point out that L gives a fair indication of the success of a method
for large t and L′ for relatively small t.
Davies and Martin divide up the methods they investigated into 6 groups

(i) Methods which compute a Sample.
These are methods which have been mentioned in Chapter 7 and which
were available at that time. Of the methods chosen for comparison only
the Post-Widder formula with n = 1 and the Gaver-Stehfest method were
included from this group.

(ii) Methods which expand f(t) in Exponential Functions.
These are methods which we have included in this book under methods of
Series Expansion, e.g. the methods of Papoulis of expansion in terms of
Legendre polynomials and trigonometric sums. They also include in this
section the method of Schapery (given above) and the method of Bell-
man, Kalaba and Lockett [16] which involves using the Gauss-Legendre
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quadrature rule but can be regarded as a special case of the Legendre
method.

(iii) Gaussian Numerical Quadrature of the Inversion Integral.
The two methods included in this section are the methods of Piessens [178]
and Schmittroth (see §4.1).

(iv) Methods which use a Bilinear Transformation of s.
In this category Davies and Martin include the methods of Weeks, Piessens
and Branders and the Chebyshev method due to Piessens [179] — see
Chapter 3.

(v) Representation by Fourier Series.
The methods included in this group are those of Dubner and Abate, Sil-
verberg/ Durbin and Crump — see §4.4.

(vi) Padé Approximation.
No methods were given in this category because a knowledge of the Taylor
expansion about the origin might not be available. Also, Longman [139]
has reported the erratic performance of this method, even with functions
of the same form, but differing in some parameter value.

Davies and Martin adopt a general procedure for determining the optimum val-
ues of the variable parameters. If the paper describing the method specifies an
optimum value of a parameter under certain conditions, that value is adopted
if appropriate. For example, Crump [53] noted that T = 0.8tmax gives fairly
optimal results. For the remaining parameters a reasonable spread of parameter
values was used in preliminary tests and, assuming that best results on most of
the test functions were obtained in a small range of parameter values, final tests
were made covering these values more closely. “Optimum” parameter values for
any given test function are taken to be the ones that give the highest accuracy
with respect to the measures L and L′. They also devise a scheme for getting
“optimum” parameter values based on optimum parameter values for the 32
measures of best fit (a value of L and L′ for each test function).
As a general rule of guidance Davies and Martin advocate the use of more than
one numerical inversion method especially when dealing with an unknown func-
tion. Their overall conclusion, on the basis of the 16 functions tested, was that
the Post-Widder method in group (i), i.e. with n = 1, and all the methods
in group (ii) seldom gave high accuracy. The Gaver-Stehfest method, however,
gave good accuracy over a fairly wide range of functions. They report that the
methods in group (iv) give exceptional accuracy over a wide range of functions
as does the method of Crump from group (v). The other Fourier series methods
and the methods in group (iii) gave good accuracy on a fairly wide range of
functions.
Where special situations apply other methods might be more appropriate. Thus
if f̄(s) is a rational function the method of Padé approximation gives highly ac-
curate results. Again, if f̄(s) is known only on the real axis, or the determination
of f̄(s) for complex s is very difficult, then the Chebyshev method of Piessens
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and the Gaver-Stehfest method are to be preferred (in that order).
Note that values of t considered by Davies and Martin satisfied t ≤ 15.

9.3 Later Surveys

9.3.1 Narayanan and Beskos

Narayanan and Beskos [160] compare eight methods of Laplace transform in-
version. They can be grouped into three categories:-

(i) Interpolation — collocation methods;

(ii) Methods based on expansion in orthogonal functions;

(iii) Methods based on the Fourier transform.

In the first group they describe what they call ‘Method of maximum degree of
precision’, which is essentially the method of Salzer given in Chapter 4 as ex-
tended by Piessens. They remark that extensive tables of the relevant quadra-
ture formulae are given in Krylov and Skoblya [122]. The second method in this
group was Schapery’s collocation method (see §9.1) and the third method was
the Multidata method of Cost and Becker [50]. The latter method assumes that

f(t) =
n∑

i=1

aie
−bit, (9.3)

and by minimizing the mean square error in the above approximation they
obtain the system of equations

m∑

j=1

sjf(sj)
[
1 +

bk

sj

]−1

=
m∑

j=1

n∑

i=1

ai

[
1 +

bi

sj

]−1 [
1 +

bk

sj

]
k = 1, 2, · · · , n

(9.4)
By pre-selecting the sequence {bi} equation (9.4) represents a system of linear
equations from which the ai can be determined. However, the big problem is in
the selection of good values of the bi.
In the second group of methods Narayananan and Beskos include the method of
Papoulis where they assume that the function f(t) is expressible as a sine series,
the expansion of f(t) in terms of Legendre polynomials and Weeks’s method of
inversion using Laguerre polynomials. In this latter method they mention that
the coefficients in the expansion can be computed efficiently by using the Fast
Fourier Transform as demonstrated by Wing [256].
In the final group they give the methods of Cooley, Lewis and Welch [46] and
Durbin [73].
Their conclusions about the relative efficacy of the various methods was that
the interpolation method of Salzer/Piessens, the Weeks method and the two
methods from group (iii) provide very good results (within plotting accuracy)
while the remaining four are generally very poor.
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9.3.2 Duffy

Duffy [72] used the survey by Davies and Martin as the background for his pa-
per on the Comparison of Three New Methods on the Numerical Inversion of
Laplace Transforms. Two of the methods had been known to Davies and Mar-
tin, namely those of Weeks and Crump, but had been considerably improved
by Lyness and Giunta [150] and Honig and Hirdes [112] respectively after the
survey — the method of Talbot was not known to them at the time. Murli and
Rizzardi [159] give an algorithm for Talbot’s method and Garbow et al [92] have
given an algorithm for the improved Weeks method while Honig and Hirdes give
their own Fortran program. Duffy, in addition to using the 16 test functions in
Davies and Martin, concentrates his tests on three types of transforms:- those
that have only poles, those with a mixture of poles and branch points and those
having only branch points. He also looked at the inversion of joint Fourier-
Laplace transforms.
Duffy reports very good results for Talbot’s method with the exception of Test
1 (the Bessel function J0(t)). Talbot [226] mentions that the presence of branch
points can cause problems and gives a strategy for overcoming this and obtained
results which were on a par with those obtained for other functions (Other au-
thors have obtained good results by computing 1/

√
s2 + 1 as 1/[

√
s + i

√
s− i ]).

Talbot’s method was not applicable to Test 12 because that transform had an
infinity of poles on <s = 0. Poor results were also obtained for this Test func-
tion by the other two methods. The Honig and Hirdes method was also fairly
poor when the function f(t) had a discontinuity as in Test 10. The Garbow
et al method also encountered difficulties when the function f(t) possessed a
singularity at the origin of the form

√
t or ln t.

9.3.3 D’Amore, Laccetti and Murli

D’Amore et al [56] also compared several methods with their own routine
INVLTF. In particular the NAG routine C06LAF which is based on the method
of Crump, the NAG routines C06LBF and C06LCF which are based on the
Garbow et al method, the routine DLAINV which is given as Algorithm 619 in
the ACM Collected Algorithms and the routine LAPIN of Honig and Hirdes.
They concentrated their attention on eight test functions f̄1(s), f̄10(s), f̄15(s),
f̄18(s), f̄28(s), f̄30(s), f̄32(s), f̄34(s) (see list of Test Transforms). d’Amore et al
carry out their investigations for two sets of values of t, t ∈ [1, 15.5] (t small)
and t ∈ [15.5, 100] (t large). The parameters in the routines were taken to be
the default parameters and an accuracy of 10−7 was requested for each package.
Double precision arithmetic was used throughout. The program C06LBF was
not tested on the functions f̄10(s) and f̄34(s) as the Weeks method requires the
continuity of the inverse Laplace transform.
d’Amore et al assert that LAPIN is not an automatic routine so that compar-
isons can only be made in general terms. They estimate that INVLTF is faster
than LAPIN by factors of 6 or 7. With regard to DLAINV they feel that IN-
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VLTF works much better in terms of function evaluation and put this down
to a better discretization estimate. The NAG routines were more efficient if
the inverse transform had to be computed for a range of values of t. However,
their performance depended heavily on the choice of their incidental parame-
ters. This was particularly the case when the error indicator suggested that
the program be re-run with a new choice of parameters. They reported that
the routine C06LAF returned no result for t = 5.5 for the function f1 and for
several values of t for f34. In all these routines it was particularly important
to get a correct value of c which is an upper bound for γ. If one chooses c less
than γ the routine might appear to work well but will, in general, produce a
completely erroneous result.

9.3.4 Cohen

The present author has used the programs given at the URL
www.cf.ac.uk/maths/cohen/programs/inverselaplacetransform/
to compare the methods of Crump, Gaver/Post-Widder, Honig-Hirdes, Sidi, Tal-
bot and Weeks. The comparison is in some ways unfair as some of the methods
use double precision arithmetic (approximately 16 decimal digits) while others
use quadruple precision arithmetic and the program for Talbot’s method is es-
sentially single length. Ideally, to minimize errors due to severe cancellation,
quadruple precision arithmetic would be desirable in all cases. Higher precision
still would be advantageous as has been shown by Abate and Valkó [2] in a
recent paper. However, for the benefit of users, it was decided at an early stage
to include some tested routines in case newer routines failed. It should be noted
that all the methods are critically dependent on parameters and a poor selection
of these parameters will yield unsatisfactory results. It is thus recommended
that as many methods as possible are tried in order to get a consensus value
and, wherever possible, programs should be rerun using different (but sensible)
parameters.
In the table at the end of this chapter there is a list of 34 test transforms which
have been used by other investigators. For the comparisons we have decided to
select the following test transforms f̄1(s), f̄3(s), f̄11(s), f̄15(s), f̄25(s), f̄30(s),
f̄34(s) together with the additional transform f̄35(s). This latter function ex-
hibits additional properties which are not present in the previous members of
the list because of the combination of fractional powers of s in the denomina-
tor. We have omitted f̄10(s) from the list of examples chosen by d’Amore et
al as this is a particular example of a transform which can be easily found by
considering g(s) = 1/s and then applying the translation theorem. Another
useful device which can be effective in extending the range of values for which
a method is successful is to apply the shift theorem. Thus instead of com-
puting f(t) we compute g(t) where g(s) = f(s + α), for suitable α. It then
follows that f(t) = eαtg(t). This was particularly useful in the case of f̄30(s).
The calculations have been carried out for a selection of values of t, namely,
tk = 2k−1, k = 0, 1, · · · , 7. These computations were performed on the Thor
UNIX computer at Cardiff University.
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t f1(t) f3(t) f11(t) f15(t)
0.5 0.9384698072 0.7788007831 0.1159315157 1.070641806[−3]

1.0 0.7651976866 0.6065306597 -0.5772156649 2.066698535[−2]

2.0 0.2238907791 0.3678794412 -1.2703628455 5.399096651[−2]

4.0 -0.3971498099 0.1353352832 -1.9635100260 5.188843718[−2]

8.0 0.1716508071 1.831563889[−2] -2.6566572066 3.024634056[−2]

16.0 -0.1748990740 3.354626279[−4] -3.3498043871 1.373097780[−2]

32.0 0.1380790097 1.125351747[−7] -4.0429515677 5.501020731[−3]

64.0 9.259001222[−2] 1.266416555[−14] -4.7360987483 2.070340096[−3]

Table 9.1: Numerical values of test functions

t f25(t) f30(t) f34(t) f35(t)
0.5 0.7978845608 0.1270895400 0 0.3567230473
1.0 1.1283791671 0.5682668420 0.5 0.2356817540
2.0 1.5957691216 4.5667335568 0.5 0.1551649316
4.0 2.2567583342 2.484103565[2] 0.5 0.1018061471
8.0 3.1915382432 7.405092100[5] 0.5 6.657603724[−2]

16.0 4.5135166684 6.580246682[12] 0.5 4.339956704[−2]

32.0 6.3830764864 5.195957567[26] 0.5 2.820616527[−2]

64.0 9.0270333368 3.239757005[54] 0.5 1.827963282[−2]

Table 9.2: Numerical values of test functions

In the first two tables 9.1, 9.2 we present the correct values, to 10 places of deci-
mals/10 significant digits, of fk(t) for the functions we have selected. In the next
tables we give an indication of the number of correct decimal digits/significant
digits obtained by employing the various methods outlined above. Some re-
sults were obtained to more than 10 decimal places/significant digits and where
this has occurred we have written 10 in bold form — in some of these cases
more than 20 decimal digit accuracy was obtained. An asterisk indicates that
the method was not applicable to the given transform as, for example, Weeks’s
method for f11(t). A question mark indicates that no results were printed for
those t-values. In the case of the author’s variation of the Sidi method, §4.3, it
sometimes happens that A and B do not agree to 10 decimal places and where
this occurs we have selected the quantity which gives the most accurate answer
(by assessing the behaviour of the terms in the respective algorithm). Selection
has been indicated by a dagger. In addition to the Fortran programs we have
included the Mathematica program of Abate and Valkó [2] for Talbot’s method
which gives excellent results when the parameters are chosen appropriately.

For the function f̄1(s) most methods, with the exception of Talbot where
the results of Duffy were replicated when f̄(s) was set at 1/

√
s2 + 1, gave rea-

sonable answers (5 decimal place accuracy was requested for the Crump and
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t C G/P-W H-H S T W
0.5 5 10 10 10† 4 5
1.0 5 10 10 10 5 5
2.0 5 10 10 10 5 5
4.0 5 8 10 10 2 5
8.0 5 4 10 10 3 5
16.0 4 4 10 10 3 4
32.0 5 ? 10 10 4 0
64.0 5 ? 0 6 3 0

Table 9.3: Comparison of methods for f1(t)

t C G/P-W H-H S T W
0.5 3 10 10 10 4 5
1.0 3 10 10 10 7 5
2.0 3 10 10 10 6 5
4.0 5 10 10 10 5 5
8.0 5 10 10 10 3 4
16.0 1? 10 10 10 2 1
32.0 ? 10 10 10 0 0
64.0 ? ? 6 10 0 0

Table 9.4: Comparison of methods for f3(t)

Weeks method and the formulation of the Talbot program constrains the rela-
tive accuracy to O(10−6)). Setting f̄(s) = 1/

√
s + i

√
s− i gave the results in

the above table which are given in the Talbot column — see Abate and Valkó.
For the Gaver method the ρ-algorithm did not converge for t = 16, 32, 64.
However the W (m)-algorithm did converge for t = 16. The value t = 64 proved
to be more than a match for all methods except the Crump and Sidi.

With regard to the function f̄3(s) most methods worked well for smaller
values of t. However the Crump, Talbot and Weeks methods were very poor for
t ≥ 16. The Sidi method was the only one to get good results for t = 64.

For the function f̄11(s) the Weeks method was not applicable for this func-
tion. All other methods performed well.

The Gaver and Honig-Hirdes methods came out best for the function f̄15(s)
although, as mentioned in §4.3, a considerable improvement can be effected by
applying the Sidi approach in complex form with suitably modified x`.

The Gaver, Honig-Hirdes, Sidi and Talbot methods worked extremely well
for the function f̄25(s).

The Sidi method out-performed all the other methods for the function f̄30(s)
while the Talbot and Weeks methods were consistently good for t ≤ 16. The
Talbot Mathematica program did get good results for these values when an
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t C G/P-W H-H S T W
0.5 0 10 10 10 4 *
1.0 5 10 10 10 5 *
2.0 5 10 10 10 6 *
4.0 5 10 10 10 5 *
8.0 5 10 10 10 5 *
16.0 5 10 10 10 5 *
32.0 5 10 10 10 5 *
64.0 3 10 10 10† 7 *

Table 9.5: Comparison of methods for f11(t)

t C G/P-W H-H S T W
0.5 0 10 9 10 2 *
1.0 0 10 10 10 4 *
2.0 1 9 10 7 4 *
4.0 0 9 10 6 4 *
8.0 0 10 10 3† 5 *
16.0 0 10 10 6† 4 *
32.0 0 10 10 8† 3 *
64.0 0 10 10 10† 3 *

Table 9.6: Comparison of methods for f15(t)

t C G/P-W H-H S T W
0.5 * 10 10 10 6 *
1.0 * 10 10 10 7 *
2.0 * 10 10 10 7 *
4.0 * 10 10 10 8 *
8.0 * 10 10 10 8 *
16.0 * 10 10 10 7 *
32.0 * 10 10 10 7 *
64.0 * 10 10 10 7 *

Table 9.7: Comparison of methods for f25(t)
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t C G/P-W H-H S T W
0.5 4 10 10 10 5 5
1.0 4 10 10 10 6 5
2.0 4 8 8 10 6 5
4.0 ? 9 0 10 4 5
8.0 ? 0 0 10 5 5
16.0 ? 0 0 10† 4 4
32.0 ? 0 0 10† 5 0
64.0 ? 0 0 10 0 0

Table 9.8: Comparison of methods for f30(t)

M t f30(t)
300 0.5 0.127089539996054215885673481679998

1.0 0.568266842009869230412941804595398
2.0 4.56673355677501693150021934399341
4.0 248.410356547740449616160896803338
8.0 740509.209988052727930341834736775
16.0 6.58024668189005793008079079342660× 1012

32.0 5.19595756734301406909103225744039× 1026

64.0 −3.22412909586142947581050430394136× 1037

400 64.0 3.239757004995495910185561406964565× 1054

Table 9.9: Mathematica results for f30(t) by Talbot’s method.

appropriate contour (precision control factor) was chosen. Results for this case
are given in Table 9.9, where all the results are given rounded to 32 significant
figures.

Results for function f̄34(s) were very mixed. Apart from t = 0.5 the t-values
are points of discontinuity of the function and the average value of 0.5 should
be returned. The Crump method gives a zero answer for t = 1, 2, 4 but is
accurate for all other values. For t = 32 the Honig-Hirdes and Sidi methods
yield incorrect results. Surprisingly, values obtained for t = 64 were accurate.
Trials suggested that this value is obtained for all values t > t0, for some t0, and,
in this range of t, we are determining the value in mean of f34(t). Although,
technically, Talbot’s method is supposed to fail when we have an infinity of
singularities on the imaginary axis some good results were obtained by using
the Talbot Mathematica program but this was only because of the choice of t
resulted in determining f(t) at points of discontinuity.

The Gaver, Honig-Hirdes and Sidi methods worked extremely well on the
function f̄35(s). The Talbot method was consistent but did not yield the same
order of accuracy — double length arithmetic would have helped here. The
Mathematica program gave excellent results.
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t C G/P-W H-H S T W
0.5 5 3 10 10† * *
1.0 0 1 4 2 * *
2.0 0 1 2 2† * *
4.0 0 1 1 2 * *
8.0 5 1 2 3 * *
16.0 5 6 5 6† * *
32.0 5 10 0 ? * *
64.0 5 10 10 10 * *

Table 9.10: Comparison of methods for f34(t)

t C G/P-W H-H S T W
0.5 * 10 10 10 4 *
1.0 * 10 10 10 5 *
2.0 * 10 10 10 5 *
4.0 * 10 10 10 4 *
8.0 * 10 10 10 4 *
16.0 * 10 10 10 3 *
32.0 * 10 10 10 3 *
64.0 * 10 10 10 4 *

Table 9.11: Comparison of methods for f35(t)
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9.4 Test Transforms

i f̄i(s) fi(t)
1 (s2 + 1)−1/2 J0(t)
2 s−1/2e−1/s (πt)−1/2 cos(2

√
t)

3 (s + 1
2 )−1 e−t/2

4 1/((s + 0.2)2 + 1) e−0.2t sin t
5 s−1 1
6 s−2 t
7 (s + 1)−2 te−t

8 (s2 + 1)−1 sin t
9 s−1/2 (πt)−1/2

10 s−1e−5s H(t− 5)
11 s−1 ln s −C − ln t

12 (s(1 + e−s))−1 g(t) = g(2 + t), g(t) =
{

1, 0 < t < 1
0, 1 < t < 2

13 (s2 − 1)(s2 + 1)−2 t cos t
14 (s + 1

2 )1/2 − (s + 1
4 )1/2 (e−t/4 − e−t/2)(4πt3)−1/2

15 e−4s1/2
2e−4/t(πt3)−1/2

16 arctan(1/s) t−1 sin t
17 1/s3 1

2 t2

18 1/(s2 + s + 1) (2/
√

3)e−t/2 sin(
√

3t/2)
19 3/(s2 − 9) sinh(3t)
20 120/s6 t5

21 s/(s2 + 1)2 1
2 t sin t

22 (s + 1)−1 − (s + 1000)−1 e−t − e−1000t

23 s/(s2 + 1) cos t
24 1/(s− 0.25)2 tet/4

25 1/s
√

s 2
√

(t/π)
26 1/(s + 1)1/2 e−t/

√
πt

27 (s + 2)/s
√

s (1 + 4t)/
√

πt
28 1/(s2 + 1)2 1

2 (sin t− t cos t)
29 1/s(s + 1)2 1− e−t(1 + t)
30 1/(s3 − 8) 1

12e−t[e3t − cos(
√

3t)−√3 sin(
√

3t)]
31 ln[(s2 + 1)/(s2 + 4)] 2[cos(2t)− cos t]/t
32 ln[(s + 1)/s] (1− e−t)/t

33 (1− e−s)/s2

{
t 0 ≤ t ≤ 1
1 otherwise

34 1/[s(1 + es)]
{

0 2k < t < 2k + 1
1 2k + 1 < t < 2k + 2 ∀k.

35 1/(s1/2 + s1/3) Series expansion given in §4.1



Chapter 10

Applications

10.1 Application 1. Transient solution for the
Batch Service Queue M/MN/1

In this application we are modelling customers arriving at random who are
served in batches of maximum size N . This is exactly the situation which arises
with the operation of lifts in stores or office blocks as safety considerations limit
the number of people who can use the lift. It is assumed that the inter-arrival
time of customers has a negative exponential distribution with mean λ and that
the service time of batches has a negative exponential distribution with mean µ.
The problem to be solved is the determination of the mean number of customers
in the queue as a function of time — see Griffiths et al [107].

Derivation of the Model Equations.

Let pn(t) denote the probability that there are n customers in the queue
at time t. Then the probability p0(t + δt) that there are no customers at time
t + δt equals the probability that there were no customers at time t multiplied
by the probability of no new arrivals in time δt plus the sum of the probabilities
of there being i(i = 1, ..., N) at time t and a batch service having taken place
between t and t + δt. Thus

p0(t + δt) = p0(t)[1− λδt] +
N∑

i=1

pi(t)[1− λδt]µδt.

Rearranging

p0(t + δt)− p0(t)
δt

= −λp0(t) +
N∑

i=1

pi(t)[1− λδt]µ,
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and, as δt → 0, we obtain

dp0

dt
= −λp0(t) + µ

N∑

i=1

pi(t). (10.1)

Similarly, for n ≥ 1 we have

pn(t + δt) = pn(t)[1− λδt][1− µδt] + pn−1(t)λδt[1− µδt] + pn+N (t)[1− λδt]µδt,

leading to

dpn

dt
= −(λ + µ)pn(t) + λpn−1(t) + µpn+N (t), n ≥ 1. (10.2)

We now solve the system of differential equations (10.1), (10.2).

Solution of the Model Equations.

Let

G(z, t) =
∞∑

n=0

znpn(t), (10.3)

be the probability generating function associated with the model. Then from
(10.1), (10.2) we have

dp0

dt
= −λp0(t) + µ[p1(t) + p2(t) + · · ·+ pN (t)],

z
dp1

dt
= −(λ + µ)zp1(t) + λzp0(t) + µzpN+1(t),

z2 dp2

dt
= −(λ + µ)z2p2(t) + λz2p1(t) + µz2pN+2(t),

...

Summation by columns gives

∂G(z, t)
∂t

= −(λ + µ)[G(z, t)− p0(t)] + λzG(z, t) +
µ

zN
[G(z, t)−

N∑

i=0

zipi(t)]

−λp0(t) + µ
N∑

i=1

pi(t),

or

∂G

∂t
= −(λ + µ)G(z, t) + λzG(z, t) +

µ

zN
G(z, t)− µ

zN

N∑

i=0

zipi(t) + µ
N∑

i=0

pi(t),
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which can be written as

∂G

∂t
= [−(λ + µ) + λz +

µ

zN
]G(z, t) + µ

N∑

i=0

pi(t)− µ

zN

N∑

i=0

zipi(t). (10.4)

Now let Ḡ(z, s) denote the Laplace transform of G(z, t) that is

Ḡ(z, s) =
∫ ∞

0

e−stG(z, t)dt, (10.5)

then the transform of (10.4) is

sḠ(z, s)−G(z, 0) = [−λ(1−z)−µ(1− 1
zN

)]Ḡ(z, s)+µ
N∑

i=0

p̄i(s)− µ

zN

N∑

i=0

zip̄i(s),

where p̄i(s) is the Laplace transform of pi(t). On the assumption that nothing
is in the system at t = 0 we have G(z, 0) = 1 and consequently

[
s + λ(1− z) + µ

(
1− 1

zN

)]
Ḡ(z, s) = 1 + µ

N∑

i=0

p̄i(s)− µ

zN

N∑

i=0

zip̄i(s).

Equivalently,

Ḡ(z, s) =
zN + µ

∑N
i=0(z

N − zi)p̄i(s)
[s + λ(1− z)]zN + µ(zN − 1)

. (10.6)

The denominator in (10.6) is a polynomial of degree N + 1 in z, call it q(z),
where

q(z) = −λzN+1 + (s + λ + µ)zN − µ, (10.7)

and thus has N + 1 zeros. Certainly, if µ ≤ λ, and <s ≥ γ for appropriate
γ, there are exactly N zeros within the unit circle and one zero outside (see
Appendix 11.6). As Ḡ(z, s) must be analytic inside and on the unit circle, the
numerator must vanish at the N zeros z1, z2, . . . , zN of the denominator which
lie within the unit circle, i.e., we may write the numerator as

A(z − z1)(z − z2) . . . (z − zn), |zi| < 1, i ≤ N,

where A is a constant. (10.6) becomes

Ḡ(z, s) =
A(z − z1)(z − z2) . . . (z − zN )
[s + λ(1− z)]zN + µ(zN − 1)

. (10.8)

To determine A we note that

.
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Ḡ(1, s) = L{G(1, t)} =
∫ ∞

0

e−stG(1, t)dt.

But

G(1, t) =

[ ∞∑
n=0

znpn(t)

]

z=1

,

=
∞∑

n=0

pn(t) = 1,

so that

Ḡ(1, s) = L{1} = 1/s.

Hence

1
s

=
A

∏N
i=1(1− zi)

s
,

giving

A =
1∏N

i=1(1− zi)
.

Substituting for A in (10.8) and observing that the denominator has the repre-
sentation

−λ(z − z1)(z − z2) . . . (z − zN )(z − zN+1), |zN+1| > 1,

we find that

Ḡ(z, s) =
1

λ(zN+1 − z)
∏N

i=1(1− zi)
. (10.9)

Writing zN+1 − z = zN+1(1− z/zN+1) we can expand (10.9) as a power series
in z. The coefficient of zn will be p̄n(s) where

p̄n(s) =
1

λ
[∏N

i=1(1− zi)
]
zn+1
N+1

. (10.10)

pn(t) could be determined if it was possible to invert this transform (the diffi-
culty being that z1, . . . , zN+1 are all unknown functions of s).
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Determination of the Mean number of Customers at time t.

Denote by M(t) the mean number of customers in the queue at time t. Then

M(t) =
∞∑

n=0

npn(t),

and thus, taking Laplace transforms,

M̄(s) =
∞∑

n=0

np̄n(s). (10.11)

The sum on the right hand side of (10.11) can be derived from

Ḡ(z, s) =
∫ ∞

0

e−stG(z, t)dt =
∫ ∞

0

( ∞∑
0

znpn(t)

)
dt,

=
∞∑
0

zn

∫ ∞

0

e−stpn(t)dt =
∞∑
0

znp̄n(s),

giving
∂Ḡ

∂z
=

∞∑
0

nzn−1p̄n(s),

and consequently

M̄(s) =
{

∂Ḡ

∂z

}

z=1

. (10.12)

Hence from (10.9)

M̄(s) =
1

λ(
∏N

i=1(1− zi))(zN+1 − 1)2
,

=
1

λ(
∏N+1

i=1 (1− zi))(1− zN+1)
,

=
−1

s(1− zN+1)
, (10.13)

as the first part of the denominator is exactly the denominator of (10.8) when
z = 1. Recall that the formula (10.13) is only valid for <s ≥ γ and it would be in-
valid if additional zeros of the denominator of (10.6) were outside the unit circle.

Formula (10.13) is a lot simpler than formula (10.10), as it only involves
one unknown zN+1. But it still means that we cannot express M̄(s) in terms
of s explicitly and this presents some difficulties in the application of some of
the numerical methods for inverting the Laplace transform. We note, however,

10.1 TRANSIENT SOLUTION.
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that for a given numerical value of s the root zN+1 is determinable by any good
root solving process from equation (10.7), which enables M̄(s) to be determined
from (10.13). Care must be taken, however, to ensure that we don’t infringe the
condition <s ≥ γ.

Example 10.1 Consider the case λ = 3, µ =1, N=2. Several approaches sug-
gest themselves for determining M̄(s):-

Rational approximation.

z3 now satisfies the cubic equation

q(z) = z3 − 1
3 (s + 4)z2 + 1

3 = 0,

and a first approximation to the root is

z
(1)
3 = 1

3 (s + 4).

Consequently an approximation to M̄(s) is M̄1(s) where, from (10.13),

M̄1(s) =
3

s(s + 1)
=

3
s
− 3

s + 1
,

yielding the approximate solution

M1(t) = 3− 3e−t.

A second approximation can be obtained by applying the Newton-Raphson for-
mula

z
(2)
3 = z

(1)
3 − q(z(1)

3 )/q′(z(1)
3 ),

which yields

z
(2)
3 = 1

3 (s + 4)− 3
(s + 4)2

,

giving an approximation M̄2(s),

M̄2(s) =
3(s + 4)2

s(s3 + 9s2 + 24s + 7)
,

and hence
M2(t) = 48

7 −Ae−αt − e−βt(B cos γt + C sin γt),

where

A = 6.635827218 α = 0.331314909
B = 0.221315642 β = 4.334342545
C = 0.157806294 γ = 1.530166685

1.
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s 1/s f̄(s)
2 0.500 1.100736169
4 0.250 0.6180339887
5 0.200 0.5096822474
8 0.125 0.3356892445

Table 10.1: Table of function values for Lagrange interpolation.

A further application of the Newton-Raphson formula produces

z
(3)
3 = P (s)/Q(s),

where

P (s) = s9 + 36s8 + 576s7 + 5331s6 + 31176s5 + 118224s4

+ 286869s3 + 421884s2 + 332784s + 102286,

and
Q(s) = 3(s + 4)2(s3 + 12s2 + 48s + 55)(s3 + 12s2 + 48s + 37),

from which we can determine an approximation M3(t) (see Chapter 5).

2. Interpolation.

Since
M̄(s) = −1/s(1− zN+1),

we have, on the assumption that f̄(s) = −1/(1 − zN+1) can be expanded as a
series in 1/s,

M̄(s) =
a1

s
+

a2

s2
+

a3

s3
+ · · · .

For appropriate choice of s we can evaluate the function −1/(1 − zN+1) and
then use the Lagrange interpolation formula to approximate f̄(s). Thus,

f̄(s) ≈
k∑

i=1

Li(1/s)f̄(si), (10.14)

where

Li(1/s) =
∏

j 6=i

(
1
s
− 1

sj

)
/

∏

j 6=i

(
1
si
− 1

sj

)
.

For the example we are considering we have computed f̄(s) for a number of
values of s which are recorded in Table 10.1

10.1 TRANSIENT SOLUTION.
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k uk = 1/sk f̄(sk)
1 0.96194 1.85478
2 0.69134 1.42822
3 0.30866 0.73906
4 0.03806 0.11003

Table 10.2: Data for interpolation by Chebyshev polynomials.

Application of the Lagrange interpolation formula gives

f̄(s) ≈ 1.1614792
s3

− 1.8908255
s2

+
2.84078075

s
+ 0.007867285,

and since M̄(s) = f̄(s)/s we have

M(t) ≈ 0.007867 + 2.84078t− 0.945413t2 + 0.193580t3.

An alternative approach is to interpolate using Chebyshev polynomials. If we
assume that s is real and greater than or equal to 1 then 1/s lies between 0 and
1 and, assuming that f̄(s) has an expansion in terms of 1/s we can reasonably
expect f̄(s) to be representable in terms of a Chebyshev expansion

f̄(s) = 1
2a0T

∗
0 (u) +

∞∑
1

aiT
∗
i (u), u = 1/s, (10.15)

where the shifted Chebyshev polynomials satisfy

T ∗0 (u) = 1, T ∗1 (u) = 2u− 1,

T ∗i+1(u) = 2(2u− 1)T ∗i (u)− T ∗i−1(u).

If we curtail the series (10.15) after N ′ terms and choose uk to be the roots
of the equation T ∗N ′+1(u) = 0 we can get approximations for the coefficients in
(10.15), namely,

ai =
2

N ′ + 1

N ′+1∑

k=1

f̄(sk)T ∗i (uk). (10.16)

With N ′ = 3, for example, we obtain Table 10.2 and, applying (10.16), the
coefficients are found to be

a0 = 2.06604 a1 = 0.93784
a2 = −0.07158 a3 = 0.01548

so that

f̄(s) ≈ 1.03302 + 0.93784
(

2
s
− 1

)
− 0.07158

(
8
s2
− 8

s
+ 1

)

+ 0.01548
(

32
s3
− 48

s2
+

18
s
− 1

)
.
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t M5(t) M7(t) M11(t)
1 2.09887 2.098898 2.09888998
5 7.21757 7.217428 7.21742866
10 12.63402 12.633765 12.63376729
15 17.80708 17.806697 17.80670042
20 22.89213 22.891567 22.89157171
25 27.93761 27.936815 27.93681966
30 32.96325 32.962193 32.96219778

Table 10.3: Estimates for M(t) using the Gaver method.

Hence we obtain
M̄(s) = f̄(s)/s,

and, using the result L−1{1/sn+1} = tn/n!, we obtain

M(t) = 0.00812 + 2.72732t− 0.65784t2 + 0.08256t3.

We need not, of course, restrict ourselves to cubic polynomials.

3. The method of Gaver

This method has been described in Chapter 7. The function M̄(s) has to be
evaluated at s = r ln 2/t for r = n, n + 1, · · · , 2n. The numerical estimates
obtained for M(t), call them Mn(t), are presented in Table 10.3 for a vari-
ety of n and t. Clearly, there is in this instance remarkable accuracy, even
for small values of n, over the range of values of t which we have consid-
ered. We give a program for estimating M(t) by the Gaver method at the
URL www.cf.ac.uk/maths/cohen/programs/inverselaplacetransform/ .

. TRANSIENT SOLUTION
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10.2 Application 2. Heat Conduction in a Rod

In order to study this problem we require a physical model. We make the
assumption that heat is conceptually like a fluid and is free to flow from one
position to another in a material. Its presence is measured by the temperature
(as recorded on a thermometer) — the higher the temperature the more heat
present. The flow of heat will be from places of higher temperature to places of
lower temperature. The unit of heat (in cgs units) is called the calorie and is
the amount of heat needed to raise the temperature of one gram of water one
degree Centigrade.
There are two hypotheses about the nature of heat which have experimental
support. The first, called the absorption hypothesis, states that the amount of
increase, ∆Q, in the quantity of heat in a material is directly proportional to
the mass m of the material and to the increase in temperature ∆u, i.e.,

∆Q = cm∆u.

The constant of proportionality, c, is called the specific heat of the material and
does not vary throughout the material. For water c=1 and for silver c ≈ 0.06.
The second hypothesis, called the conduction hypothesis, concerns a strip of
length ∆x of a rod of cross-section A whose sides are insulated and whose ends
are held at two different temperatures. For convenience we shall imagine that
we are dealing with the flow of heat along a uniform rod which has the same
thermal properties throughout its length. Then in a small time ∆t we find that
∆Q is proportional to A, ∆u/∆x and ∆t, i.e.,

∆Q = −KA
∆u

∆x
∆t.

K, the constant of proportionality, is called the thermal conductivity of the
material. For water K ≈ 0.0014 and for silver K ≈ 1.0006. It follows from the
above, that in a section of material of mass m, the instantaneous rate of increase
in the quantity of heat at some time t0 is proportional to the instantaneous rise
in temperature. That is

∂Q

∂t

∣∣∣∣
t0

= cm
∂u

∂t

∣∣∣∣
t0

. (10.17)

Likewise, the rate of flow across the surface x = x0 at a given instant t0 is
proportional to the temperature gradient there. Thus

∂Q

∂t

∣∣∣∣
x0

= −KA
∂u

∂x

∣∣∣∣
x0

. (10.18)

Relating this to a segment of the rod between x0 and x0 + ∆x we see that
the rate of absorption ∂Q/∂t at a given point x at time t0 is proportional to
∂u/∂t. The average value of ∂u/∂t over the segment occurs at some interior
point x0 + θ∆x giving, for the whole segment,

∂Q

∂t

∣∣∣∣
t=t0

= cρ∆xA
∂u

∂t
(x0 + θ∆x, t0), 0 < θ < 1, (10.19)
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where ρ denotes the density of the material of the rod.
This rate of heat increase may be computed in another way as it is exactly the
difference between the heat entering the segment at x0 and leaving at x0 + ∆x
at time t0. That is, from (10.18),

∂Q

∂t

∣∣∣∣
t=t0

= KA

(
∂u

∂x
(x0 + ∆x, t0)− ∂u

∂x
(x0, t0)

)
. (10.20)

The mean value theorem applied to the right-hand term of (10.20) shows that
this term equals

KA
∂2u

∂x2
(x0 + η∆x, t0)∆x, 0 < η < 1.

Now, equating these results and letting ∆x approach zero we obtain the equation

K
∂2u

∂x2
= cρ

∂u

∂t
, (10.21)

where the derivatives are evaluated at (x0, t0). Writing κ = K/cρ we obtain the
one dimensional heat conduction equation

κ
∂2u

∂x2
=

∂u

∂t
. (10.22)

κ was called the thermometric conductivity by Clerk Maxwell but Lord Kelvin
referred to it as the diffusivity.
We now return to Example 2.4 where we established that

ȳ(x, s) =
1
s
e−x

√
s,

and contour integration yielded

y(x, t) = 1− erf
(

x

2
√

t

)
= erfc(x/2

√
t).

Thus at time t = 1 and x = 5 we have y ≈ 0.0004069520. We have evaluated
y(5, 1) by a number of methods and the results are given below:-

1. Crump’s method

This was an application of NAG Library program C06LAF where, of course,
the function subroutine has to evaluate L−1{exp(−5

√
s)/s} at t = 1. With

tfac=0.8, alphab=0.01 and relerr=0.001 a result of 0.000407 was obtained.

2. Weeks method

No results were obtainable for the Laplace transform given in this example using
the NAG Library routines C06LBF and C06LCF. This failure derives from the
fact that y(x, t) does not have continuous derivatives of all orders.

10.2. HEAT CONDUCTION IN A ROD
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3. Gaver’s method

With n = 7 the estimate for y(5, 1) was 0.0004062 while n = 11 yielded y(5, 1) ≈
0.0004069537.
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10.3 Application 3. Laser Anemometry

McWhirter and Pike [154] consider the integral equation

g(τ) =
∫ ∞

0

K(vτ)p(v)dv, 0 ≤ τ < ∞, (10.23)

where the kernel K depends on the product of v and τ and has the property
that ∫ ∞

0

|K(x)|x−1/2dx < ∞. (10.24)

This class of equation includes the Laplace transform.
The eigenfunctions φω(v) and eigenvalues λω satisfy

∫ ∞

0

K(vτ)φω(v)dv = λωφω(τ). (10.25)

McWhirter and Pike consider the function

φs(v) = Av−s + Bvs−1, (10.26)

where A,B and s are complex numbers, substituted in (10.23). This yields a
function

gs(τ) =
∫ ∞

0

K(vτ)(Av−s + Bvs−1)dv,

which exists and is finite provided the integral converges. Making the substitu-
tion z = vτ we get

gs(τ) =
∫ ∞

0

K(z)
[
A

( z

τ

)−s

+ B
( z

τ

)s−1
]

dz

τ
,

or
gs(τ) = AK̃(1− s)τs−1 + BK̃(s)τ−s, (10.27)

where K̃(s) is the Mellin transform of K(x) defined by

K̃(s) =
∫ ∞

0

xs−1K(x)dx.

If K̃(s) exists for α < <s < β then it follows that K̃(1 − s) exists for 1 − β <
<s < 1 − α and thus equation (10.27) is properly defined for α ≤ 1

2 ≤ β.
Choosing

A =
√

(K̃(s)), B = ±√(K̃(1− s)),

then
gs(τ) = ±√(K̃(s)K̃(1− s))φs(τ),

and consequently the functions

φ
(1)
s (v) =

√
(K̃(s))v−s +

√
(K̃(1− s))vs−1

φ
(2)
s (v) =

√
(K̃(s))v−s −√(K̃(1− s))vs−1

]
(10.28)

10.3. LASER ANEMOMETRY
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are eigenfunctions satisfying (10.25) with corresponding eigenvalues

λ(1)
s , λ(2)

s = ±√(K̃(s)K̃(1− s)). (10.29)

If we set s = 1
2 +iω where ω is real and unbounded then introducing a convenient

multiplicative factor yields a continuum of real eigenfunctions given by

ψ(1)
ω (v) =

√
(K̃( 1

2 + iω))v−
1
2−iω +

√
(K̃( 1

2 − iω))v−
1
2+iω

2
√

(π|K̃( 1
2 + iω)|) ,

=
<[
√

(K̃( 1
2 + iω))v−

1
2−iω]√

(π|K̃( 1
2 + iω)|) , (10.30)

and

ψ(2)
ω (v) =

√
(K̃( 1

2 + iω))v−
1
2−iω −√(K̃( 1

2 − iω))v−
1
2+iω

2i
√

(π|K̃( 1
2 + iω)|) ,

=
=[
√

(K̃( 1
2 + iω))v−

1
2−iω]√

(π|K̃( 1
2 + iω)|) , (10.31)

with real eigenvalues
λ(1)

ω , λ(2)
ω = ±|K̃( 1

2 + iω)|. (10.32)

These functions are well defined provided that the transform K̃( 1
2 + iω) exists

and a sufficient condition for this is (10.24). Moreover, because of the symmetry
relationships

ψ
(1)
ω (v) = ψ

(1)
−ω(v)

ψ
(2)
ω (v) = −ψ

(2)
−ω(v)

]
(10.33)

we need only consider ω ≥ 0.
McWhirter and Pike proceed to show that the eigenfunctions are not normalis-
able but are mutually orthogonal in the sense that

∫ ∞

0

ψ(1)
ω (v)ψ(1)

ω′ (v)dv =
{

δ(ω − ω′) if ω 6= 0
2δ(ω) if ω = 0

∫ ∞

0

ψ(2)
ω (v)ψ(2)

ω′ (v)dv =
{

δ(ω − ω′) if ω 6= 0
0 otherwise

and also ∫ ∞

0

ψ(1)
ω (v)ψ(2)

ω′ (v)dv = 0.

They also give expressions for ψ
(1)
ω (v) and ψ

(2)
ω (v). If p(v) is a piecewise con-

tinuous function for which
∫∞
0
|p(v)|v−1/2dv exists then we can express p(v) in

terms of the eigenfunctions, i.e.,

p(v) =
∫ ∞

0

a(1)
ω ψ(1)

ω (v)dω +
∫ ∞

0

a(2)
ω ψ(2)

ω (v)dω, (10.34)
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where
a
(1)
ω =

∫∞
0

p(v)ψ(1)
ω (v)dv

a
(2)
ω =

∫∞
0

p(v)ψ(2)
ω (v)dv

]
(10.35)

Substitution of (10.34) in (10.23) gives

g(τ) =
∫ ∞

0

a(1)
ω λ(1)

ω ψ(1)
ω (τ)dω +

∫ ∞

0

a(2)
ω λ(2)

ω ψ(2)
ω (τ)dω, (10.36)

and from the orthogonality relationships it follows that

a(i)
ω =

1

λ
(i)
ω

∫ ∞

0

g(τ)ψ(i)
ω (τ)dτ, i = 1, 2, (10.37)

and hence

p(v) =
∫ ∞

0

dωψ(1)
ω (v)

1

λ
(1)
ω

∫ ∞

0

dτψ(1)
ω (τ)g(τ)

+
∫ ∞

0

dωψ(2)
ω (v)

1

λ
(2)
ω

∫ ∞

0

dτψ(2)
ω (τ)g(τ).

(10.38)

This solution parallels that of (8.8) the discrete summation being replaced by
an integral since (10.23) has an infinite continuum of eigenvalues. As mentioned
in Chapter 8 it is impossible to gain any information about those components
of p(v) for which ω > ωmax and the solution must therefore be written as

p(v) =
∫ ωmax

0

dωψ(1)
ω (v)

1

λ
(1)
ω

∫ ∞

0

dτψ(1)
ω (τ)g(τ)

+
∫ ωmax

0

dωψ(2)
ω (v)

1

λ
(2)
ω

∫ ∞

0

dτψ(2)
ω (τ)g(τ)

+
∫ ∞

ωmax

dω α(1)
ω ψ(1)

ω (v) +
∫ ∞

ωmax

dω α(2)
ω ψ(2)

ω (v),

(10.39)

where ωmax depends on errors during calculation or in measuring g(τ) and the
coefficients α

(i)
ω , i = 1, 2 must be determined by some a priori knowledge of the

result and cannot be evaluated independently.
McWhirter and Pike note that the solution of equation (10.23) can be obtained
more directly by taking the Mellin transform of both sides. As the integral is a
Mellin convolution this gives

g̃(s) = K̃(s)p̃(1− s),

and thus
p̃(s) = g̃(1− s)/K̃(1− s).

The transform of p(v) is analytic for <(s) = 1
2 and from the inversion formula

for the inverse Mellin transforms it follows that

p(v) =
1

2πi

∫ 1
2+i∞

1
2−i∞

v−s g̃(1− s)
K̃(1− s)

ds. (10.40)

10.3. LASER ANEMOMETRY
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From this result we can recover the equation (10.38) by making the substitution
s = 1

2 + iω, expressing (10.40) as a double integral and then formulating in
terms of the eigenfunctions.
McWhirter and Pike consider the example of the equation

g(τ) =
∫ ∞

0

e−αvτ cos(βvτ)p(v)dv,

and observe that, in the limit α → 0, this takes the form of a Fourier cosine
transform while in the limit β → 0 it becomes a Laplace transform. From
(10.29) they are able to determine the rate at which the eigenvalues decay to
zero. In the case β → 0 they determine that the eigenvalue ‘spectrum’, more
specifically, |λ(i)

ω |2, decays proportionally to e−πω for large ω. When α = 0 they
show

|λ(i)
ω |2 =

π

2β

which never decays to zero. This analysis showed that the Fourier transform
has a much greater information capacity than the Laplace transform.
To illustrate the application of the above theory McWhirter and Pike consider
the numerical solution of the equation

g(τ) =
(1 + τ)2 − β2τ2

[(1 + τ)2 + β2τ2]2
=

∫ ∞

0

e−vτ cos(βvτ)p(v)dv. (10.41)

whose exact solution is known to be

p(v) = ve−v,

but no knowledge of this was assumed during their calculations. These were
based on the use of equation (10.39) and the undetermined parameters αω being
set to zero as in the truncation method of regularization. Crucial to the whole
exercise was the choice of ωmax and they examined the results obtained by
varying ωmax under varying conditions of noise (in the data) and information
capacity (i.e. β). Also, to evaluate the eigenfunction projection integrals (10.37)
it is convenient to replace the lower limit by L1 (since ψ

(i)
ω (τ) is not defined at

τ = 0) and the upper limit by L2 but at the same time ensuring that the
truncation error which results does not significantly affect the computation. By
choosing

L1 = 10−15, L2 = 105,

we have
∣∣∣∣∣
∫ L1

0

g(τ)ψ(i)
ω (τ)dτ

∣∣∣∣∣ ≤
1√
π

∫ L1

0

|g(τ)|τ−1/2dτ ∼ L
1/2
1 , i = 1, 2

and
∣∣∣∣
∫ ∞

L2

g(τ)ψ(i)
ω (τ)dτ

∣∣∣∣ ≤
1√
π

∫ ∞

L2

|g(τ)|τ−1/2dτ ∼ L
−3/2
2 , i = 1, 2
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and the truncation errors are thus of order 10−7.5. As the quadrature routine
used by McWhirter and Pike evaluated the integrals correctly to an accuracy of
10−5 the truncation error was of no consequence.
If

∆ω = 2π/[ln(L2)− ln(L1)], (10.42)

it can be shown that the discrete subset of eigenfunctions

ψ
(i)
n∆ω, i = 1, 2; n = 0, 1, 2, · · ·

form a complete orthogonal set on the interval [L1, L2] and may be normalised
by the factor ∆ω1/2. As a result the calculations reduced to the evaluation of
the discrete finite sums

pN (v) =
N∑

n=0

c
(1)
n

λ
(1)
n∆ω

ψ
(1)
n∆ω(v) +

N∑
n=1

c
(2)
n

λ
(2)
n∆ω

ψ
(2)
n∆ω(v), (10.43)

where

c(i)
n =





∆ω
∫ L2

L1
g(τ)ψ(i)

n∆ω(τ)dτ, n 6= 0

1
2∆ω

∫ L2

L1
g(τ)ψ0(τ)dτ, n = 0

i = 1, 2 (10.44)

with
∆ω ' 0.136 and N∆ω = ωmax. (10.45)

The uniform discretisation was particularly convenient in this example as the
value of ωmax in which we are interested is then directly proportional to N ,
the number of terms retained in the series. McWhirter and Pike evaluated the
eigenfunction projections (10.44) by first making the substitution τ = ex in
order to obtain better conditioning of the integrals which were then evaluated
using a four-point Gauss quadrature formula. They remark that it is not possi-
ble to evaluate pN (v) when v = 0 because ψ

(i)
n∆ω(v) is singular.

Of particular interest to us is the case β = 0 in equation (10.41) which, as stated
earlier, corresponds to finding an inverse Laplace transform. Two cases were
considered and the results obtained by McWhirter and Pike are shown graphi-
cally in Figures 10.1 and 10.2 .

Case 1. Calculation of the eigenfunction components of g(τ) not subject to
any noise apart from the small error (∼ 10−5) incurred during the integration
process.

Case 2. Identical with Case 1 except for the calculated eigenfunction compo-
nents being subjected to the addition of Gaussian random errors with standard
deviation 10−3.

10.3. LASER ANEMOMETRY
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Figure 10.1: pN (v) as a function of v. β = 0 and noise ∼ 10−5 : broken curve,
N = 20; chain curve, N = 60; full curve, actual solution p(v) = ve−v (and
N = 40) (Reproduced from [154] with permission)

Figure 10.2: pN (v) as a function of v. β = 0 and noise ∼ 10−3 : broken
curve, N = 20; chain curve, N = 30; full curve, actual solution p(v) = ve−v

(Reproduced from [154] with permission)

In a subsequent paper McWhirter [153] looked at the problem of solving the
integral equation

g(τ) = A

∫ ∞

0

e−v2τ2/r2
[
1 + f cos

(
2πvτ

s0

)]
p(v)dv + c, (10.46)

which is, apart from the term c which denotes experimental background level,
an equation of the form (10.23). The exponential term arises from the gaussian
profile (assumed to have width r) of the laser beams and the cosine term is
associated with the virtual fringe pattern whose visibility factor is f and fringe
spacing is s0. A is a simple scaling factor and whereas previously we virtually
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had an explicit formulation for g(τ), the correlation function is now defined by
the sample

g(τi) = g(iT ), i = 1, 2, · · · , N (10.47)

where T is the correlation time and N is the number of channels used. McWhirter
uses a simple histogram model to deal with this situation and mentions that in
some situations it would be appropriate to model the data using cubic B-spline
functions.

10.3. LASER ANEMOMETRY
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10.4 Application 4. Miscellaneous Quadratures

The application of Laplace transforms to evaluate integrals involving a parame-
ter is something which is not new. However, most of the examples cited involve
transforms which are known from tables. Abramowitz [4] gives the example of
the function f(x) defined by the integral

f(x) =
∫ ∞

0

e−u2
du

x + u
. (10.48)

If the substitution u = xv is made and x2 is replaced by t we obtain

g(t) =
∫ ∞

0

e−tv2

1 + v
dv.

The Laplace transform of g(t) with respect to t is
∫ ∞

0

dv

(1 + v)(s + v2)
=

π

2
√

s(s + 1)
+

ln s

2(s + 1)
.

Abramowitz writes that, by consulting the tables in Doetsch [68], we have

L−1

{
1√

s(s + 1)

}
=

2e−t

√
π

∫ t1/2

0

eu2
du, L−1

{
ln s

(s + 1)

}
= −e−tEi(t),

where Ei(t) is the exponential integral. It follows that

f(x) =
√

πe−x2
∫ x

0

eu2
du− 1

2e−x2
Ei(x2). (10.49)

This technique is particularly useful when the integrand contains an oscillatory
term such as cos tx, sin tx or Jn(tx). For example, if

I1(t) =
∫ ∞

0

sin tx

x + 1
dx, (10.50)

then

L{I1(t)} =
∫ ∞

0

e−st

(∫ ∞

0

sin tx

x + 1
dx

)
ds. (10.51)

Interchange of the variables is permissible here if <s > 0 and consequently

Ī1(s) =
∫ ∞

0

1
x + 1

(∫ ∞

0

e−st sin txdt

)
dx,

=
∫ ∞

0

x

(s2 + x2)(x + 1)
dx. (10.52)

The integrand in (10.52) can be put in the form

1
s2 + 1

[(
x

s2 + x2
− 1

x + 1

)
+

s2

s2 + x2

]
,
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and integration yields

Ī1(s) =
ln s

s2 + 1
+

1
2πs

s2 + 1
. (10.53)

By consulting the tables in Roberts and Kaufman [197] we find that

I1(t) = ( 1
2π + Si(t)) cos t− Ci(t) sin t, (10.54)

where Ci(t) and Si(t) are respectively the Cosine and Sine integrals

Ci(t) = C + ln t +
∫ t

0

cosu− 1
u

du, Si(t) =
∫ t

0

sin u

u
du,

— see Abramowitz and Stegun [5]. Even if one didn’t know the solution in
terms of Sine and Cosine integrals one could use the techniques given in this
book to determine I1(t) for a range of t.

Another example which was studied by the author [41] concerns the computation
of the creep function φ(t) which satisfies the integral equation

B(x) =
∫ ∞

0

φ(t) sin xtdt, (10.55)

where B(x) is the dielectric loss factor represented by

B(x) =
Axα

1 + x2α
, 0 < α ≤ 1.

Application of the Fourier sine inversion theorem yields

φ(t) =
2A

π

∫ ∞

0

xα

1 + x2α
sin txdx, t > 0.

Thus apart from a constant factor, the function

I2(α, t) =
∫ ∞

0

xα

1 + x2α
sin txdx, t > 0, (10.56)

determines the creep function φ(t). We can get an explicit formula for α = 1 by
straightforward contour integration, namely

I2(1, t) = π
2 e−t.

We can also use Laplace transforms to determine the value of I2( 1
2 , t). Proceed-

ing as above we find

Ī2( 1
2 , s) = L{I2( 1

2 , t)} =
∫ ∞

0

x3/2dx

(1 + x)(s2 + x2)
.

By the application of the result (Whittaker and Watson [250] p.117 et seq.)

10.4. MISCELLANEOUS QUADRATURES
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∫ ∞

0

xa−1Q(x)dx = πcosec aπ
∑

residues of Q(z),

where it is assumed that xaQ(x) → 0 as x → 0 and x → ∞ and the function
(−a)a−1Q(z) is integrated around a keyhole contour, we obtain

Ī2(1
2 , s) =

π

s2 + 1
+

πs1/2(s− 1)√
2(s2 + 1)

,

=
π

s2 + 1
+

π√
(2s)

− π√
(2s)

(
s

s2 + 1
+

1
s2 + 1

)
. (10.57)

The last term on the right hand side is, apart from the constant factor, the
product of the transforms of 1/

√
(πt) and (cos t+sin t) and thus the convolution

theorem enables us to establish a closed form result for I2(1
2 , t), namely

I2( 1
2 , t) = π sin t +

√
(π/2t)−√(2π){(cos t + sin t)C(

√
t) + (sin t− cos t)S(

√
t)},

(10.58)
where C(t) and S(t) are the Fresnel integrals

C(t) =
∫ t

0

cos(u2)du, S(t) =
∫ t

0

sin(u2)du.

For other values of α we obtain the integral

Ī2(α, t) =
∫ ∞

0

x1+αdx

(1 + x2α)(s2 + x2)
,

which, apart from some exceptional values of α, such as α = 1
4 , is quite

formidable to compute. In this instance it is preferable to deal with the original
integral I(α, t) and apply the method of §11.3 to evaluate the integral — care,
however, must be taken in evaluating the first term of the sequence because of
the singularity at the origin.

The earlier examples were all infinite integrals but we can treat a wider range
of integrals. Talbot [226] cites the examples of Burnett and Soroka [28] which
arose in modelling a problem in Acoustics. If we just consider the cosine integral
(the sine integral can be treated similarly)

C(t, R) =
∫ d

c

√
(1−R/x2) cos txdx, c =

√
R, d =

√
(R + 1/R) (10.59)

then

C̄(s,R) =
∫ d

c

(∫ ∞

0

e−st cos txdt

)√
(1−R/x2)dx,

yielding

C̄(s,R) =
∫ d

c

s

s2 + x2

√
(1−R/x2)dx.
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By making the substitution x =
√

Rcosecθ this integral becomes

√
R

∫ π
2

π
2−ϕ

s cot2 θdθ

s2 + Rcosec2θ
, where sec φ =

√
(1 + 1/R2).

A little manipulation produces the result

C̄(s, R) =
√

R(s + R/s)
∫ π

2

π
2−ϕ

dθ

s2 sin2 θ + R
− ϕ

√
R

s
.

From Gradshteyn and Ryzhik [102] we have the result

∫
dx

a + b sin2 x
=

1√
a(a + b)

arctan

(√
a + b

a
tan x

)
, a, b > 0

and hence we can obtain an explicit expression for C̄(s,R), namely,

C̄(s,R) =
π
√

(R + s2)
2s

−
√

(R + s2)
s

arctan

(√
R + s2

R3

)
− ϕ

√
R

s
. (10.60)

C(t, R) can then be determined for given t by numerical evaluation of the inverse
transform.

10.4. MISCELLANEOUS QUADRATURES
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10.5 Application 5. Asian Options

An option is the right (but not the obligation) to buy or sell a risky asset,
such as a stock or a parcel of shares, at a pre-specified price within a specified
period (Seydel [207]). Options have a limited life time. The maturity date T
fixes the time at which the rights of the holder expire and for t > T the option
is worthless. There are two basic types of option. The call option gives the
holder the right to buy the asset, whose price at time t will be denoted by S
or St, for an agreed price K (K is the unit price of the asset) by the date T .
The put option gives the holder the right to sell the asset at a price K (which
is different from the call option price) by the date T . The price K is called the
strike or exercise price. There are two aspects of options and they relate to
either the holder or the bank/stockbroker which underwrites the option. The
latter have an obligation to buy/sell the asset at the strike price K if the holder
decides to exercise the option but their risk situation is different from that of
the holder as they receive a premium when they underwrite the option and this
compensates for any future potential liabilities. This application investigates
options from the standpoint of the holder.
Options have been given designations relating to continents. European options
can only be exercised at the expiry date T . American options can be exercised
at any time until the expiry date. Asian options give the holder the right to
buy an asset for its average price over some prescribed period. With all these
types of options we want to be able to estimate the pay-off function V (S, t)
which in the case of a European call option only has validity when t = T and is
defined by

V (S, T ) =
{

0, S ≤ K (option is worthless)
S −K, S > K (option exercised)

or
V (S, T ) = max(S −K, 0) = (S −K)+. (10.61)

Similarly for a European put option

V (S, T ) = (K − S)+. (10.61′)

The fact that the pay-off function is positive when the option is exercised does
not necessarily imply that the holder of the option makes a profit. This is
because the initial costs paid when buying the option have to be subtracted.
One also has to take into account that the money could have been invested
over the option period at some interest rate r in order to work out whether the
taking out of the option was profitable to the holder.
Likewise the pay-off function for an American call option is (St −K)+ and for
an American put (K−St)+ where t denotes any time ≤ T . With Asian options
we need to determine the average value of St. This can be done by observing St

at discrete time intervals, say tk = k(T/n), k = 1, · · · , n and then determining
the arithmetic mean

1
n

n∑

k=1

Stk
.



193

If the observations are continuously sampled in the period 0 ≤ t ≤ T , the
arithmetic mean corresponds to

Ŝ =
1
T

∫ T

0

Stdt. (10.62)

An alternative approach, which is sometimes used, is to consider the geo-
metric average which is defined by

(
n∏

k=1

Stk

)1/n

= exp

(
1
n

ln
n∏

k=1

Stk

)
= exp

(
1
n

n∑

k=1

ln Stk

)
.

For continuously sampled observations this can be expressed in the form

Ŝg = exp

(
1
T

∫ T

0

ln Stdt

)
. (10.63)

The averages (10.62), (10.63) have been formulated for the time period 0 ≤
t ≤ T and thus corresponds to a European option. To allow for early exercise
of the option as with American options we have to modify (10.62) and (10.63)
appropriately. Thus, for example, (10.62) now becomes

Ŝ =
1
t

∫ t

0

Sudu.

We can define the pay-off function for Asian options as

(Ŝ −K)+ average price call

(K − Ŝ)+ average price put

The above averages can be expressed in integral form by

At =
∫ t

0

f(Su, u)du, (10.64)

where the function f(S, u) corresponds to the type of average chosen. In partic-
ular, if (10.62) holds then, apart from a scaling factor, f(S, u) = S. For Asian
options the price V is a function of S, A and t and it is shown in Seydel [207]
that V satisfies the partial differential equation

∂V

∂t
+ 1

2σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
+ f(S, t)

∂V

∂A
− rV = 0. (10.65)

The quantities r and σ in the above equation denote respectively interest rate
and volatility. The above equation has been solved approximately by applying
the classical methods of Numerical Analysis for the solution of partial differential
equations — see, for example, Rogers and Shi [198].
Geman and Yor [94] established that the problem of valuing Asian options could

10.5. ASIAN OPTIONS
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be tackled by Laplace transform evaluation. Calculations have been performed
by Fu et al [90], Carr and Schröder [30] and Craddock et al [52] and others using
a variety of numerical methods for the inversion of Laplace transforms but, at
this point in time, results have not been very satisfactory. Essentially, we are
trying to determine the price C(t) of the Asian option which is defined by

C(t) =
4e−r(T−t)S(t)

σ2(T − t0)
C(ν)(h, q), (10.66)

where r is the constant interest rate,

ν =
2r

σ2
−1, h = 1

4σ2(T−t), q =
σ2

4S(t)

(
K(T − t0)−

∫ t

t0

S(u)du

)
, (10.67)

and the Laplace transform of C(ν)(h, q) with respect to the h variable is

C̄(ν)(s, q) =
∫ ∞

0

e−shC(ν)(h, q)dh,

=

∫ 1/2q

0
e−xx

1
2 (µ−ν)−2(1− 2qx)

1
2 (µ+ν)+1dx

s(s− 2− 2ν)Γ
(

1
2 (µ− ν)− 1

) ,

(10.68)

where Γ denotes the gamma function and µ =
√

2s + ν2. Since the integral in
(10.68) requires 1

2 (µ− ν)− 2 > −1 it is necessary to apply the shift theorem in
order to weaken the singularity at the origin. To this end we redefine µ to be
µ′ =

√
2(s + α) + ν2 where α > 2 + 2ν. If we make the substitution u = 2qx in

the integral ∫ 1/2q

0

e−xx
1
2 (µ′−ν)−2(1− 2qx)

1
2 (µ′+ν)+1dx,

we obtain

1

(2q)
1
2 (µ′−ν)−1

∫ 1

0

e−u/2qu
1
2 (µ′−ν)−2(1− u)

1
2 (µ′+ν)+1du.

Application of the result (Abramowitz and Stegun [5])

Γ(b− a)Γ(a)
Γ(b)

M(a, b, z) =
∫ 1

0

ezuua−1(1− u)b−a−1du, <(b) > <(a) > 0,

(10.69)
where M(a, b, z) is the Kummer confluent hypergeometric function, gives the
Laplace transform to be inverted in the form

C̄(ν)(s+α) =
(1/2q)

1
2 (µ′−ν)−1Γ[12 (µ′ + ν) + 2]M( 1

2 (µ′ − ν)− 1, µ′ + 1,−1/(2q))
(s + α)(s + α− 2− 2ν)Γ(µ′ + 1)

.

(10.70)
Now

M(a, b, z) = 1 +
az

b
+

(a)2z2

(b)22!
+ · · ·+ (a)nzn

(b)nn!
+ · · · ,
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Case r σ T − t0 K S(t0) q
1 0.05 0.5 1 2 1.9 0.06579
2 0.05 0.5 1 2 2 0.0625
3 0.05 0.5 1 2 2.1 0.05952
4 0.02 0.1 1 2 2 0.0025
5 0.18 0.3 1 2 2 0.0225
6 0.0125 0.25 2 2 2 0.03125
7 0.05 0.5 2 2 2 0.125

Table 10.4: Values for Asian option parameters

where (a)n is the Pochhammer symbol, i.e.,

(a)n = a(a + 1) · · · (a + n + 1) = Γ(n + a)/Γ(a), (a)0 = 1.

Substituting the series for M in (10.70) yields

C̄(ν)(s+α) =
(1/2q)

1
2 (µ′−ν)−1Γ[ 12 (µ′ + ν) + 2]Γ[ 12 (µ′ − ν)− 1]
(s + α)(s + α− 2− 2ν)Γ(µ′ + 1)2

∞∑

k=0

ρk, (10.71)

where

ρ0 = 1, ρk+1 =
−1

2q(k + 1)

( 1
2 (µ′ − ν) + k − 1

µ′ + k + 1

)
ρk.

Craddock et al [52] point out the difficulty of computing the series
∑∞

k=0 ρk

when q is small as, with direct summation, 150 terms are needed to attain
accuracy of the order of 10−4 when q = 0.015. With q less than 0.01 thousands
of terms are needed to produce even one decimal place accuracy. As we have
mentioned previously it is necessary to be able to evaluate the Laplace transform
function accurately in order to overcome the ill-conditioning inherent in the
numerical methods of inversion. In this instance we note that the criteria given
by Sidi [216] for the satisfactory performance of the W (m)-algorithm are satisfied
and we can thus sum the series accurately with far fewer terms needed. In the
course of time this author hopes to be able to present his results for a selection of
parameters which have been published by other researchers. Some typical values
are given in Table 10.4. In Table 10.5 we give the Asian option prices obtained
by Abate and Whitt [3], Eydeland and Geman [83], Turnbull and Wakeman
[235] and Craddock et al [52] which will be denoted respectively by AW, EG,
TW and CHP. Abate and Whitt used a trapezium rule approximation to the
Bromwich integral, Eydeland and Geman employed a fast Fourier transform
method, Turnbull and Wakeman gave an approximation formula and Craddock
et al used an alternative quadrature routine from the Mathematica Library.

10.5. ASIAN OPTIONS
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Case AW EG TW CHP
1 0.194 0.195 0.195 0.194
2 0.248 — 0.251 0.247
3 0.308 0.308 0.311 0.307
4 0.055 0.058 0.056 —
5 0.222 0.227 0.220 0.243
6 0.172 0.172 0.173 0.175
7 0.340 0.351 0.359 0.355

Table 10.5: Asian option prices
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11.1 Table of Laplace Transforms

Function Laplace Transform

f(t) f̄(s)

af(t) + bg(t) af̄(s) + bḡ(s)

f(at)
1
a
f̄

( s

a

)
, a > 0

e−αtf(t) f̄(s + α)

f ′(t) sf̄(s)− f(0+)

tf(t) − f̄ ′(s)

∫ t

0

f(u)du
1
s
f̄(s)

f(t)
t

∫ ∞

s

f̄(x)dx

(f1 ∗ f2)(t) =
∫ t

0

f1(t− u)f2(u)du f̄1(s)f̄2(s)

1
1
s

H(t)
1
s

tn
n!

sn+1
, n = 0, 1, · · ·

tν
Γ(ν + 1)

sν+1
, <ν > −1
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Function Laplace Transform

e−αt 1
s + α

e−αttn
n!

(s + α)n+1
, n = 0, 1, · · ·

H(t− a)
e−as

s
, a > 0

H(t− a)f(t− a) e−asf̄(s), a > 0

δ(t) 1

cos at
s

s2 + a2

sin at
a

s2 + a2

t sin at
2as

(s2 + a2)2

sin at− at cos at
2a3

(s2 + a2)2

sinh at
a

s2 − a2

cosh at
s

s2 − a2

e−αt sin at
a

(s + α)2 + a2

e−αt cos at
s + α

(s + α)2 + a2
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Function Laplace Transform

Ln(t)
(s− 1)n

sn+1

sin t

t
tan−1

(
1
s

)

J0(t)
1√

s2 + 1

Jn(t)
(
√

s2 + 1− s)n

√
s2 + 1

Jn(t)/t (
√

s2 + 1− s)n/n (n > 0)

tn−
1
2 J

n− 1
2
(t)

2n− 1
2 (n− 1)!√

π(s2 + 1)n
(n > 0)

J0(2
√

at)
1
s
e−a/s

1√
πt

cos 2
√

at
1√
s
e−a/s

1√
πt

cosh 2
√

at
1√
s
ea/s

1√
πa

sin 2
√

at
1

s3/2
e−a/s

1√
πa

sinh 2
√

at
1

s3/2
ea/s

I0(t)
1√

s2 − 1
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Function Laplace Transform

In(t)
(s−√s2 − 1)n

√
s2 − 1

a

2
√

πt3
e−a2/4t e−a

√
s (a > 0)

erfc
a

2
√

t

1
s
e−a

√
s (a ≥ 0)

1√
πt

e−a2/4t 1√
s
e−a

√
s (a ≥ 0)

−C − ln t
1
s

ln s

tn−1

(n− 1)!
[ψ(n)− ln t]

1
sn

ln s (n > 0)

E1(t)
1
s

ln(1 + s)

1
t
(e−at − e−bt) ln

s + b

s + a

Si(t)
1
s

tan−1

(
1
s

)

Ci(t) − 1
2s

ln(1 + s2)

f(t) (= f(t + T ))

∫ T

0
e−stf(t)dt

1− e−sT

Square wave function
1
s

tanh 1
4sT
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Function Laplace Transform

f(t1, t2) f̄(s1, s2)

f(t1)f(t2) f̄(s1)f̄(s2)

e−αt1−βt2f(t1, t2) f(s1 + α, s2 + β)

tm1 tn2f(t1, t2) (−1)m+n ∂m+n

∂sm
1 ∂sn

2

f̄(s1, s2)

∫ t1

0

∫ t2

0

f(t1 − ξ1, t2 − ξ2)g(ξ1, ξ2)dξ1dξ2 f̄(s1, s2)ḡ(s1, s2)

1
1

s1s2

sin t1
1

s2(s2
1 + 1)

cos t1 cos t2
s1s2

(s2
1 + 1)(s2

2 + 1)

sin(t1 + t2)
s1 + s2

(s2
1 + 1)(s2

2 + 1)

emin(t1,t2)
s1 + s2

s1s2(s1 + s2 − 1)
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11.1.1 Table of z-Transforms

Function z−Transform

f(n) F (z) =
∞∑

n=0

f(n)z−n

f(m)= k; f(n) = 0, n 6= m kz−n

k
kz

z − 1

kn
kz

(z − 1)2

kn2 kz(z + 1)
(z − 1)3

αn z

z − α

nαn αz

(z − α)2

αn

n!
eα/z

f(n + m), m ≥ 1 zmF (z)− zmf(0)− zm−1f(1)− ·· ·− zf(m− 1)

anf(n) F (z/a)

nf(n) − z
d

dz
F (z)

n∑

k=0

f(k)
zF (z)
z − 1

n∑

k=0

f2(k)f1(n− k) F1(z)F2(z)
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11.2 The Fast Fourier Transform (FFT)

A classical problem in Mathematics is to determine an approximation to a con-
tinuous function f(x) which is of the form

f(x) =
1
2
a0 +

m∑
r=1

(ar cos rx + br sin rx), 0 ≤ x ≤ 2π. (11.1)

This is equivalent to the interpolation problem of determining the phase
polynomial, for appropriate N ,

p(x) =
N−1∑

j=0

αje
ijx, i =

√−1, (11.2)

such that

p(xk) = f(xk), xk = 2πk/N, k = 0, · · · , N − 1, (11.3)

and it is known that p(x) is uniquely determined by taking

αj =
1
N

N−1∑

k=0

fke−2πijk/N , j = 0, · · · , N − 1. (11.4)

As each αj requires O(N) multiplications to be evaluated this means that
O(N2) would be needed to evaluate p(x) and, for large values of N , such as
would be required to get a discrete representation of the Fourier transform

F (ω) =
∫ ∞

−∞
f(t)eiωtdt, (11.5)

this would be challenging for most computers. However, Cooley and Tukey
discovered an algorithm which enables (11.2) to be evaluated, for special values
of N , in O(N logN) multiplications. The most straightforward case is where
N = 2n.

Suppose N = 2M . Then we can find an interpolating polynomial q(x) with
the property that

q(x2s) = f2s, s = 0, · · · ,M − 1,

and a polynomial r(x) with the property that

r(x2s+1) = f2s+1, s = 0, · · · ,M − 1.

Then p(x) can be expressed in terms of the two lower degree phase polynomials
by

p(x) = q(x)
(

1 + eiMx

2

)
+ r(x)

(
1− eiMx

2

)
, (11.6)
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as when

x = x2s, eiMx = eiM2π(2s)/2M = e2πis = 1,

giving
p(x2s) = q(x2s) = f2s,

and when

x = x2s+1, eiMx = eiM2π(2s+1)/2M = eiπ = −1,

giving

p(x2s+1) = r(x2s+1) = f2s+1,

so that p(x) is the phase polynomial which agrees with f(x) at the interpolation
points x0, · · · , x2M−1 .

Equation (11.6) provides the key to the algorithm of Cooley and Tukey which
operates in n steps. Step m consists of determining R phase polynomials

p(m)
r (x) = α

(m)
r0 + α

(m)
r1 eix + · · ·+ α

(m)
r,2M−1e

i(2M−1)x, r = 0, · · · , R− 1,

from 2R phase polynomials p
(m−1)
r (x), r = 0, · · · , 2R − 1 using the identity

(11.6), i.e.,

2p(m)
r (x) = pm−1

r (x)(1 + eiMx) + p
(m−1)
R+r (x)(1− eiMx),

where M = 2m−1, R = 2n−m . This gives rise to the recursive relationship
between the coefficients of the phase polynomials, namely

2α
(m)
rj = α

(m−1)
rj + α

(m−1)
R+r,j ηj

m, r = 0, · · · , R− 1

2α
(m)
r,M+j = α

(m−1)
rj − α

(m−1)
R+r,j ηj

m, j = 0, · · · ,M − 1





(11.7)

where η = e−2πi/2m

, m = 0, · · · , n. The required starting values are

α
(0)
k0 = fk, k = 0, · · · , N − 1

and, finally, we have αj = α
(n)
0j , j = 0, · · · , N − 1.

To summarise, what the FFT enables us to do is, given

X(j) =
1
N

N−1∑

k=0

A(k) exp
(

2πi

N
jk

)
, (11.8)

we can determine A(k) from

A(k) =
N−1∑

j=0

X(j) exp
(−2πi

N
jk

)
(11.9)

Symbolically we can write this as

{X(j)} FFT−−−−→ {A(k)}. (11.10)
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11.2.1 Fast Hartley Transforms (FHT)

The discrete Hartley transform pairs are given by the formulae

H(j) =
1
N

N−1∑

k=0

h(k)cas(2πjk/N), (11.11)

and

h(k) =
N−1∑

j=0

H(j)cas(2πjk/N), (11.12)

where cas(2πjk/N) ≡ cos(2πjk/N) + sin(2πjk/N). Here again we can symbol-
ically write

{H(j)} FHT−−−−→ {h(k)}. (11.13)

Note the similarities between this and the discrete Fourier transform pairs (11.8),
(11.9). In particular, if N is taken to be a power of 2 then only N log N op-
erations are required to determine the discrete Hartley transform of a N -point
data set.
If real A(k) = h(k) for i = 0, 1, · · · , N − 1, then X(j) and H(j) are related by

<{X(j)} = 1
2 (H(j) + H(N − j)), (11.14)

and

={X(j)} = 1
2 (H(j)−H(N − j)). (11.15)

Thus by setting

H(j) = <{X(j)}+ ={X(j)}, j = 0, 1, · · · , 1
2N − 1 (11.16)

H(N − j) = <{X(j)} − ={X(j)}, j = 0, 1, · · · , 1
2N − 1 (11.17)

we can apply the FHT technique. The advantage of using Hartley transforms is
that one only needs to use real arithmetic operations in order to determine h(k),
since H(j) and cas(2πjk/N) are real, and there is a speed gain (over FFT) as
a result.

11.3 Quadrature Rules

Since the inverse Laplace transform is given by an integral, in the Bromwich
formulation, it will come as no surprise that the numerical evaluation of inte-
grals plays a big part in numerical methods for the inversion of the Laplace
transform. We list here various formulae which we shall require at some stage
in developing the techniques described in the book.
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The Trapezium Rule
∫ b

a

f(x)dx = h
n∑

r=0

′′f(a + rh)− nh3

12
f ′′(ξ) = Tn − nh3

12
f ′′(ξ), (11.18)

where a < ξ < b and h = (b − a)/n. The double prime in the summation
indicates that the first and last terms in the summation are to be multiplied
by the factor 1/2. We shall sometimes use the notation T (h) instead of Tn

to indicate the trapezium rule approximation. It is worth noting that T ( 1
2h)

incorporates function values which have been used in evaluating T (h). In fact
we have the identity

T ( 1
2h) = (1/2)[T (h) + h

n∑

i=1

f(a + (i− 1
2 )h)]. (11.19)

A disadvantage of the trapezium rule is that it breaks down if the integrand
has a singularity at the end point. This can be overcome by using a modified
trapezium rule formula (see Cohen [43]) with the appropriate Richardson ex-
trapolation expansion — see Sidi [216] for a detailed discussion of Richardson
extrapolation. The rule is sometimes referred to as the trapezoidal rule.

The Euler-Maclaurin Summation Formula
∫ b

a

f(x)dx = Tn − B2

2!
h2[f ′(b)− f ′(a)]− · · ·

− B2kh2k

(2k)!
[f (2k−1)(b)− f (2k−1)(a)] + R2k, (11.20)

where Tn is defined as in (11.18), B2k denote the Bernoulli numbers and

R2k =
θnB2k+2h

2k+3

(2k + 2)!
max

a≤x≤b
|f (2k+2)(x)|, −1 ≤ θ ≤ 1.

Although, in many applications of the trapezium rule, the truncation error can
be quite large it is clear from the Euler - Maclaurin summation formula that
where the odd order derivatives tend to zero at the end-points this rule can be
very successful.

Example 11.1 Evaluate
∫∞
−∞ e−x2

dx.
We have the results in Table 11.1 .

Note that as the integrand is O(10−44) for x = ±10 we have taken a = −10
and b = 10 and clearly we have converged rapidly to the correct answer of

√
π.

The Mid-point Rule
∫ b

a

f(x)dx = h
n∑

k=1

f(a + (k − 1
2 )h) +

nh3

24
f ′′(ξ) = Mn +

nh3

24
f ′′(ξ), (11.21)
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h T (h)
1.0 1.7726372048 · · ·
0.5 1.77245385090551605266 · · ·
0.25 1.77245 38509 05516 02729 81674 83341
0.125 1.77245 38509 05516 02729 81674 83341

Table 11.1: Evaluation of
∫∞
−∞ e−x2

dx by the trapezium rule.

where a < ξ < b and h = (b − a)/n. One of the disadvantages of using the
mid-point rule is that a completely new set of function values has to be com-
puted if we are comparing estimates for the integral for any two values of n.
An advantage of the mid-point rule is that it can be used to estimate integrals
where there is a singularity at an end point.

Gaussian Quadrature Rules
These take the form

∫ b

a

w(x)f(x)dx =
n∑

k=1

αkf(xk) + Rn, (11.22)

where w(x) is a positive weight function in (a, b), the {xk} denote the roots of
the equation pn(x) = 0, where the polynomials {pn(x)} satisfy the orthogonality
relationships

∫ b

a

w(x)pm(x)pn(x)dx = 0, m 6= n (11.23)

= γn, m = n (11.24)

and the {αk} are constants, known as Christoffel numbers, given by

αk = − An+1γn

Anp′n(xk)pn+1(xk)
, (11.25)

where An is the coefficient of xn in pn(x) and, finally, the remainder term Rn

is given by

Rn =
γn

A2
n

· f (2n)(ξ)
(2n)!

, a < ξ < b. (11.26)

Thus, in the case where w(x) = 1 and [a, b] = [−1, 1] we have the Gauss-
Legendre quadrature formula

∫ 1

−1

f(x)dx =
n∑

k=1

αkf(xk) + Rn, (11.27)
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where

Rn =
22n+1(n!)4

(2n + 1)[(2n)!]3
f (2n)(ξ), −1 < ξ < 1 (11.28)

αk = 2/(1− x2
k)[P ′n(xk)]2, (11.29)

{xk}, k = 1, · · · , n are the roots of the equation Pn(x) = 0 and Pn(x) is the
nth degree Legendre polynomial.
When w(x) = 1/

√
1− x2 and [a, b] = [−1, 1] we have the Gauss-Chebyshev

quadrature formula
∫ 1

−1

f(x)√
1− x2

=
π

n

n∑

k=1

f(xk) + Rn, xk = cos
(2k − 1)π

2n
, (11.30)

where

Rn =
π

(2n)!22n−1
f (2n)(ξ), −1 < ξ < 1. (11.31)

We give one more example with w(x) = e−x and [a, b) = [0,∞). The related
orthogonal polynomials in this case are the Laguerre polynomials Ln(x). The
abscissae xk are roots of Ln(x) = 0 and the weights satisfy

αk =
(n!)2xk

(n + 1)2[Ln+1(xk)]2
, (11.32)

giving the Gauss-Laguerre quadrature formula
∫ ∞

0

e−xf(x)dx =
n∑

k=1

αkf(xk) + Rn, (11.33)

where the remainder Rn satisfies

Rn =
(n!)2

(2n)!
f (2n)(ξ), 0 < ξ < ∞. (11.34)

Change of Interval and Integration Strategies
The substitution y = 1

2 (b − a)x + 1
2 (b + a), where a and b are finite, converts

the integration range from [a, b] to [−1, 1]. We have
∫ b

a

f(y)dy =
1
2
(b− a)

∫ 1

−1

f [ 12 (b− a)x + 1
2 (b + a)]dx. (11.35)

The integral on the right hand side can be estimated by means of a Gauss-
Legendre formula.
In practice it is not always possible to determine the truncation error Rn ex-
plicitly. Possible strategies for ensuring accuracy are:-
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(1) Compare estimates for the integral using n, n + 1 and n + 2 point
formulae.

(2) Use an adaptive approach. We determine an estimate for the integral
with a n- point formula. Since

∫ 1

−1

f(x)dx =
∫ 0

−1

f(x)dx +
∫ 1

0

f(x)dx,

we can obtain another estimate by evaluating each of the right hand side inte-
grals using the same n-point formula. We then compare estimates and subdivide
the interval again if necessary.

(3) Estimate with a n-point formula and by judicial choice of extra abscis-
sae make a revised estimate for the integral — this is known as Gauss-Kronrod
integration. The reader should consult Davis and Rabinowitz [61] or Evans [81]
for further details.

The method of Clenshaw and Curtis
This method for evaluating ∫ 1

−1

f(x)dx,

assumes that f(x) is continuous and differentiable and has an expansion in
Chebyshev polynomials, i.e.

f(x) ≈
N∑

k=0

′′akTk(x), (11.36)

where the double prime indicates that the first and last terms of the summation
are to be halved and Tk(x) denotes the Chebyshev polynomial of degree k. Since

∫
Tn(x)dx = 1

2

(
Tn+1(x)
n + 1

− Tn−1(x)
n− 1

)
, n > 1

it follows that
∫ 1

−1

f(x)dx = 2(C1 + C3 + C5 + · · · ), (11.37)

where

Cr =
1
2r

(ar−1 − ar+1), r = 1, 2, · · · , N − 1

CN = aN−1/2N, CN+1 = aN/2(N + 1).

O’Hara and Smith [162] have proposed a bound for the error in the Clenshaw-
Curtis method, namely

|EN | < max{2|aN−4|, 2|aN−2|, |aN |}. (11.38)
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This is not entirely foolproof and it is advisable to compare with calculations
obtained for larger N .

Oscillatory Integrands
There are many situations where we have a solution to a problem in the form

I =
∫ b

a

f(x)w(x)dx, (11.39)

where, typically,

w(x) = cos ωx or sin ωx or J0(ωx), (11.40)

and J0(x) is the Bessel function of the first kind of zero order, f(x) is a smooth
function and ω is a fairly large positive constant. The range [a, b] could be finite
but may be [0,∞). In the case [a, b] finite and w(x) = sin ωx, Filon [84] divided
the range of integration into 2n equal parts and, in each sub-interval of width
2h where b = a + 2nh, approximated f(x) by a quadratic polynomial. He thus
obtained

∫ b

a

f(x) sin ωxdx = h[α{f(a) cos ωa− f(b) cos ωb}+ βS2n + γS2n−1], (11.41)

where

S2n = 1
2 [f(a) + f(b)] +

n−1∑

k=1

f(x2k), (11.42)

S2n−1 =
n∑

k=1

f(x2k−1), (11.43)

and

α =
1
θ

+
cos θ sin θ

θ2
− 2 sin2 θ

θ3
,

β = 2
(

1 + cos2 θ

θ2
− 2 sin θ cos θ

θ3

)
,

γ = 4
(

sin θ

θ3
− cos θ

θ2

)
, where θ = ωh.

Estimates for the error in Filon’s method are given in Abramowitz and Stegun
[5]. Evans [81] gives a detailed treatment of recent advances. Most methods
seem to have drawbacks of some sort — numerical instability being a particular
problem — but, overall, Evans seems to favour Patterson’s method [166] which
uses Gauss-Kronrod integration. This approach is available as NAG Library
Routine D01AKF.
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Infinite Integrals

If f(t) is a monotone decreasing function of t then, since

∫ ∞

0

f(t)dt =
∫ 1

0

f(t)dt +
∫ 2

1

f(t)dt + · · · ,

we can treat this as a series summation problem with

ar =
∫ r

r−1

f(t)dt,

and use the extrapolation methods given in the next section to determine the
sum of the series and hence the integral. More generally, we can write

∫ ∞

0

f(t)dt =
∫ t1

t0

f(t)dt +
∫ t2

t1

f(t)dt + · · · ,

where 0 = t0 < t1 < t2 < · · · is some appropriate subdivision of the real axis.
If the integrand is of oscillatory type, as in (11.39), then by choosing t0 = 0 and
ti to be the ith consecutive point at which w(t) is zero we have

∫ ∞

0

f(t)w(t)dt =
∫ t1

t0

f(t)w(t)dt +
∫ t2

t1

f(t)w(t)dt +
∫ t3

t2

f(t)w(t)dt + · · · ,

= a1 − a2 + a3 − · · · ,

where

ar = (−1)r−1

∫ tr

tr−1

f(t)w(t)dt,

is a positive quantity. We can employ the methods of the next section to sum
the alternating series. See §4.3 where this technique has been applied.

11.4 Extrapolation Techniques

In this section we collect together a number of extrapolation methods which
have been used by various authors who have developed methods for the nu-
merical inversion of Laplace transforms and which have been quoted in earlier
chapters. It is worth pointing out at this stage that an extrapolation method is
only guaranteed to work if the sequence it is applied to satisfies the conditions
which were imposed in its construction. This is rarely known ab initio and it
may require some difficult mathematics to establish the linkage. It is precisely
because of these difficulties that we have advocated the use of at least two dif-
ferent methods in order to establish the inverse Laplace transform.
More details about these and other methods, which should not be ignored, can
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be found in the books by Brezinski and Redivo-Zaglia [25] and Sidi [216].

Euler’s method of summation for Alternating Series
Given a convergent series

s = xv1 − x2v2 + x3v3 − · · ·+ (−1)n−1vn + · · · , 0 < x < 1, (11.44)

we can make the substitution x = y/(1 − y) to give, after expansion and rear-
rangement,

s = yv1 − y2∆v1 + y3∆2v1 − · · ·+ yn(−∆)n−1v1 + · · · , (11.45)

where ∆rv1 has its usual meaning

∆rv1 = vr+1 −
(

r

1

)
vr +

(
r

2

)
vr−1 − · · ·+ (−1)r−1

(
r

r − 1

)
v2 + (−1)rv1.

In particular, when x = 1, we have the result

s = v1 − v2 + v3 − · · ·+ (−1)n−1vn + · · ·
=

1
2
v1 − 1

4
∆v1 +

1
8
∆2v1 − · · ·+ 1

2n
(−∆)n−1v1 + · · ·

=
1
2

∞∑
1

(
−1

2
∆

)n−1

v1.

(11.46)

In practical applications a well-tried strategy is to write

s = s1 + s2, where s1 = v1 − v2 + · · ·+ (−1)k−1vk,

and to sum s1 directly and apply the Euler summation formula (11.46) to eval-
uate s2 — if x 6= 1 the same strategy can be used in conjunction with (11.45).
The Euler summation formula can also be used to find the sum of divergent
series which are summable in the Cesaro sense.

Hutton’s method for Alternating Series
If sn denotes the partial sums of an alternating series then if we define

s
(k)
−1 = 0 (k ≥ 0), s(0)

n = sn (n ≥ 0),

with
s(k)

n = 1
2 (sk−1

n−1 + sk−1
n ) (n ≥ 0), (11.47)

we have an algorithm which enables us to determine s. Here also we can deter-
mine s if the series is divergent but summable in the Cesaro sense.

The iterated Aitken method for Alternating Series
This method is based on the result that if a sequence {xn} has the property
that

xn = x + Arn,
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k S
(k)
1

3 0.69314887
4 0.693147196
5 0.69314718066
6 0.693147180560
7 0.693147180559944
8 0.693147180559943

Table 11.2: Summation of
∑∞

n=1
(−1)n−1

n by iterated Aitken method.

where A, r and x are constants then, given three consecutive terms xn, xn+1

and xn+2, we have

x = xn+2 − (xn+2 − xn+1)2

xn+2 − 2xn+1 + xn
.

To apply this to the summation of alternating series we compute the par-
tial sums of the series S

(0)
1 , S

(0)
2 , · · · , S

(0)
2k+1 and for three consecutive entries

S
(r)
j , S

(r)
j+1, S

(r)
j+2 (r = 0, 1, 2, · · · ) we form

S
(r+1)
j = S

(r)
j − (S(r)

j − S
(r)
j+1)

2

S
(r)
j − 2S

(r)
j+1 + S

(r)
j+2

, (11.48)

and proceed with calculations until we eventually arrive at S
(k)
1 .

Example 11.2 Estimate the sum of the series S = 1− 1
2 + 1

3 − 1
4 + · · · .

We obtain the results in Table 11.2
See Cohen [44] for a derivation of the method and Sidi [216] regarding con-

vergence properties.

The Shanks Transformation
Assume that a sequence {An} has behaviour of the form

Ar = Ckn +
k∑

i=1

αin(r)fi(r), (11.49)

and r is bounded appropriately. In the case where αin(r) = αi 6= 0, fi(r) = qr
i ,

n − k ≤ r ≤ n + k and Ckn = Skn we have the Shanks transformation [208]
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which can be expressed in terms of determinants by Cramer’s rule, namely,

Skn =

∣∣∣∣∣∣∣∣∣

An−k · · · An−1 An

∆An−k · · · ∆An−1 ∆An

... · · · ...
...

∆An−1 · · · ∆An+k−2 ∆An+k−1

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

1 · · · 1 1
∆An−k · · · ∆An−1 ∆An

... · · · ...
...

∆An−1 · · · ∆An+k−2 ∆An+k−1

∣∣∣∣∣∣∣∣∣

(11.50)

where Ar = Ar+1 − Ar. Skn is identical with the [k/n] Padé approximant of
the series

A1 +
∞∑

j=1

(∆Aj)zj (11.51)

evaluated at z = 1.

The ε-algorithm
Wynn [257] found that the term Skn in the Shanks transformation could be
obtained in an efficient way by means of the ε-algorithm, namely,

ε
(n)
−1 = 0, ε

(n)
0 = An

ε
(n)
k+1 = ε

(n+1)
k−1 + 1

ε
(n+1)
k −ε

(n)
k





k, n = 0, 1, · · · (11.52)

yielding
ε
(n)
2k = Sk,n+k, k, n = 0, 1, · · · (11.53)

The Levin t- and u- transformations
If, in (11.49), we take αin(r) = αinRr, n ≤ r ≤ n + k and Ckn = Tkn then
application of Cramer’s rule gives

Tkn =

∣∣∣∣∣∣∣∣∣

An An+1 · · · An+k

Rnf0(n) Rn+1f0(n + 1) · · · Rn+kf0(n + k)
...

... · · · ...
Rnfk−1(n) Rn+1fk−1(n + 1) · · · Rn+kfk−1(n + k)

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

1 1 · · · 1
Rnf0(n) Rn+1f0(n + 1) · · · Rn+kf0(n + k)

...
... · · · ...

Rnfk−1(n) Rn+1fk−1(n + 1) · · · Rn+kfk−1(n + k)

∣∣∣∣∣∣∣∣∣

(11.54)

By making the assumption that each Rr 6= 0 it is possible to divide column j
of each determinant by Rn+j−1. The choice

fi(r) = 1/ri
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k uk1

6 1.64493519
8 1.6449340412
10 1.64493406715
12 1.64493406684718
14 1.64493406684819
16 1.6449340668482275
18 1.64493406684822642

Table 11.3: Summation of
∑∞

n=1
1

n2 by Levin’s method.

then enables us to express the determinants in terms of Vandermonde determi-
nants and we obtain

Tkn =

∑k
j=0(−1)j

(
k
j

) (
n+j
n+k

)k−1
An+j

Rn+j

∑k
j=0(−1)j

(
k
j

) (
n+j
n+k

)k−1
1

Rn+j

. (11.55)

We have not specified the Rr. Levin [126] made the choice Rr = ∆Ar−1 as the
most appropriate for the summation of alternating series where the Ar are the
partial sums of the series (the Levin t-transformation). The choice Rr = r∆Ar−1

gives the Levin u-transformation

Ukn =

∑k
j=0(−1)j

(
k
j

) (
n+j
n+k

)k−2
An+j

Rn+j

∑k
j=0(−1)j

(
k
j

) (
n+j
n+k

)k−2
1

Rn+j

, (11.56)

which Levin used for the summation of positive series. We now give some exam-
ples of the application of the t- and u-transformations. Because of cancellation
increasing the number of terms used in the u-transformation might lead to nu-
merical instability. When applying the t-transformation to summing alternating
series cancellation is not a problem (as all terms are positive) but it is impor-
tant to add terms in the numerator and denominator in increasing order of
magnitude.

Example 11.3 Find the sum of the series S =
∑∞

k=1 1/n2.
This is an example given by Levin [126] and the exact answer is well-known to
be π2/6 = 1.644934066848226436 · · · . Applying formula (11.56), with n = 1,
we obtained the results in Table 11.3.

The next example gives an illustration of how the t-transform can be applied
to estimate the sum of a divergent series.

Example 11.4 Find the sum of the series 1− 1! + 2!− 3! + 4!− · · · .
This divergent series arises when trying to compute

I =
∫ ∞

0

e−tdt

1 + t
,
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k tk1(S)
6 0.59633059
8 0.59634941
10 0.59634720
12 0.59634737
14 0.5963473617
16 0.596347362335
18 0.596347362327
20 0.596347362322

Table 11.4: Summation of
∑∞

n=0(−1)nn! by the Levin t-transform.

and one assumes that

1
1 + t

= 1− t + t2 − t3 + · · · .

Substitution into the integrand gives

I = 1− 1! + 2!− 3! + 4!− · · · .

The exact value of I is eE1(1) where E1(x) is the exponential integral, see
Abramowitz and Stegun [5]. Application of (11.55) provides a good estimate as
k increases as we see from Table 11.4 . The Levin t-transform can be used to
estimate the sum (also called anti-limit) of other divergent series which converge
in the Cesaro sense.

The S-transformation of Sidi
This is more effective than the Levin t-transform and has better convergence
properties with regard to the summation of everywhere divergent series . If we
assume that the sequence {An} has behaviour of the form

Ar = Skn + Rr

n−1∑

i=0

αi

(r)i
, (11.57)

where (n)0 = 1 and (n)i = n(n+1) · · · (n+i−1), i = 1, 2, · · · is the Pochhammer
symbol . We can obtain a closed form expression for this transformation, namely

Skn =

∑k
j=0(−1)j

(
k
j

) (
(n+j)k−1
(n+k)k−1

)
An+j

Rn+j

∑k
j=0(−1)j

(
k
j

) (
(n+j)k−1
(n+k)k−1

)
1

Rn+j

, Rr = ∆Ar−1. (11.58)

We now apply the Sidi S -transform to estimate the sum of the divergent series
given in the previous example.

Example 11.5 Find the sum of the series 1− 1! + 2!− 3! + 4!− · · · .
Application of (11.58) yields Table 11.5. The reader should compare the results
in Table 11.5 with those in Table 11.4.
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k Sk1

6 0.59634724
8 0.596347768
10 0.5963473531
12 0.5963473608
14 0.59634736236
16 0.5963473623346
18 0.5963473623233
20 0.59634736232308

Table 11.5: Summation of
∑∞

n=0(−1)nn! by the Sidi S -transform

The Levin-Sidi d(m)-transformation
This is a more general transformation than the Levin t- and u-transformations
and includes them as special cases. Briefly, let the sequence {An} be such that
an = An −An−1, n = 1, 2, . . . , satisfy a linear mth order difference equation of
the form

an =
m∑

k=1

pk(n)∆an,

where

pk(n) ∼ nik

(
αk0 +

αk1

n
+

αk2

n2
+ · · ·

)
, as n →∞,

and ik are integers satisfying ik ≤ k, k = 1, . . . , m. Subject to certain conditions
holding, Levin and Sidi show that

∑∞
i=n ai has an asymptotic expansion of the

form
∞∑

i=n

ai ∼
m−1∑

k=0

nρ
k(∆kan)

(
βk0 +

βk1

n
+

βk2

n2
+ · · ·

)
, as n →∞,

where

ρk ≤ max(ik+1, ik+2 − 1, . . . , im −m + k + 1), k = 0, 1, . . . ,m− 1.

Based on this asymptotic expansion, the d(m)-transformation is defined as fol-
lows:
Choose a sequence of integers 1 ≤ R0 < R1 < R2 < · · · , and let n =
(n1, . . . , nm), where nk are nonnegative integers. Then the approximation d

(m,j)
n

to the sum
∑∞

i=1 ai is defined via the solution of the linear system of equations

Rl∑

i=1

ai = d(m,j)
n +

m∑

k=1

R
ρk−1
l (∆k−1aRl

)
nk−1∑

i=0

β̄ki

Ri
l

,

l = j, j + 1, . . . , j + N ; N =
m∑

k=1

nk.

(11.59)
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When the ρk are not known, they can be replaced in (11.59) by their upper
bounds, namely, by k + 1, k = 0, 1, . . . , m − 1. Thus, R

ρk−1
l in these equations

is replaced by Rk
l .

Note that, the Levin u- and t-transformations are special cases of the d(1)-
transformation with Rl = l + 1, l = 0, 1, . . . . We have ρ1 = 0 for the t-
transformation and ρ1 = 1 for the u-transformation.
The sequences of “diagonal” approximations d

(m,j)
n with n = (ν, . . . , ν), ν =

1, 2, . . . , seem to have the best convergence properties. These approximations
can be computed recursively and in an efficient manner via the W (m)-algorithm
of Ford and Sidi [86]. A program for this algorithm is given at the website
www.cf.ac.uk/maths/cohen/programs/inverselaplacetransform/ .
When m = 1, the W (m)-algorithm reduces to the W -algorithm of Sidi [213],
which, in the present context of the d(1)-transformation, reads as follows:

M
(j)
0 =

ARj

ωRj

, N
(j)
0 =

1
ωRj

, j ≥ 0; ωr = rρar,

M (j)
n =

M
(j+1)
n−1 −M

(j)
n−1

R−1
j+n −R−1

j

, N (j)
n =

N
(j+1)
n−1 −N

(j)
n−1

R−1
j+n −R−1

j

, j ≥ 0, n ≥ 1.

d(1,j)
n =

M
(j)
n

N
(j)
n

, j, n ≥ 0.

Here ρ = 0 in the case the series
∑∞

i=1 ai is linearly converging, whether alter-
nating (i.e. aiai+1 < 0 all i) or monotonic (i.e. ai > ai+1 > 0 or ai < ai+1 < 0
all i), and ρ = 1 when this series is logarithmically converging.
The following choices of the integers Rl (see Sidi [216]) have proved to be very
effective in obtaining stable approximations of high accuracy in different cases:

1. Arithmetic Progression Sampling (APS)

Rl = [κ(l + 1)], l = 0, 1, . . . ; for some κ ≥ 1,

where [x] = integer part of x.

2. Geometric Progression Sampling (GPS)

R0 = 1, Rl =

{
Rl−1 + 1 if [σRl−1] ≤ Rl−1,
[σRl−1] otherwise, l = 0, 1, . . . ; for some σ > 1.

Here are two examples with m = 1.

In the case where {An} is a logarithmically converging sequence, GPS should be
used (with σ = 1.3, for example). An example of this type is An =

∑n
i=1 1/i2,

whose limit is π2/6.
In the case where {An} is a linearly (but slowly) converging sequence with ∆An
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of the same sign, APS should be used with κ > 1. One such sequence of this
type is An = −∑n

i=1 xi/i, whose limit is log(1 − x). This is the case when
x / 1, the point of singularity (branch point) of the limit log(1 − x). For ex-
ample, κ = 4 will do for x = 0.9, while κ = 6 will work for x = 0.95. (κ = 1
produces inferior results.) When x is sufficiently far from x = 1 (for example,
x = 0.5 or x = −1), κ = 1 will suffice.

The ρ-algorithm of Wynn
This is given by

ρ
(n)
1 = 0, ρ

(n)
0 = An,

ρ
(n)
k+1 = ρ

(n+1)
k−1 +

xn+k+1 − xn

ρ
(n+1)
k − ρ

(n)
k

, k, n = 0, 1, · · · (11.60)

In the original formulation Wynn [258] takes xn = n. This algorithm has been
successfully applied to extrapolate the sequence of results obtained using the
Post-Widder and Gaver formulae (see §9.3.4). The ρ-algorithm is only effective
when

An ∼ α0 +
α1

n
+

α2

n2
+ · · · as n →∞; lim

n→∞
An = α0.

It is ineffective in other cases.

As stated at the beginning of this section we have given an account of the
extrapolation methods which have been employed in this book. For a compre-
hensive coverage of extrapolation methods the reader is referred to the books
by Brezinski and Redivo-Zaglia [25] and Sidi [216].

11.5 Padé Approximation

Suppose a function f(z) has an expansion

f(z) =
∞∑

k=0

akzk. (11.61)

We would like to approximate f(z) by a rational function fp,q(z) where

fp,q(z) = P (z)/Q(z), (11.62)

and P (z) and Q(z) are respectively polynomials of degree p and q. If

Q(z)f(z)− P (z) = zp+q+1Ep,q(z), Ep,q(0) 6= 0, (11.63)

then (11.62) is called a Padé approximation of f(z). We can think of fp,q(z) as
an element of a matrix and when p = q we get the element (p, p) on the main
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diagonal. More generally, we say that fp,q(z) occupies the (p, q) position in the
Padé table. This is also sometimes referred to as the [p/q] Padé approximant.
The Padé approximants to a Taylor series expansion can always be found by
solving a system of linear equations. For if

P (z) =
p∑

k=0

bkzk, Q(z) =
q∑

k=0

ckzk,

then comparison of powers of z in (11.63) gives rise to the system of equations

bk =
k∑

j=0

ajck−j , k = 0, · · · , p,

m∑

j=0

ajcm−j = 0, m = p + 1, · · · , p + q, (11.64)

Ep,q(z) =
∞∑

k=0

ekzk, ek =
q∑

j=0

cjap+q+k+1−j .

An alternative expression for Ep,q(z) is

Ep,q(z) =
1

2πi

∫

C

Q(w)E(w)
(w − z)p+q+1

dw, (11.65)

where the closed contour C encloses w = 0 and w = z and E(w) is analytic
within and on C.

The necessity to solve the systems of equations (11.64) to find the Padé
approximants fp,p(z) and fp,p+1(z) can be obviated by using a technique due to
Viskovatoff (see Khovanskii [119]). Suppose that a function g(z) has the more
general form

g(z) =
∞∑

k=0

α1kzk

/ ∞∑

k=0

α0kzk. (11.66)
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Then

g(z) =
α10

α00 + z
(α10α01 − α00α11) + (α10α02 − α00α12)z + · · ·

α10 + α11z + α12z2 + · · ·

=
α10

α00 + z
α20 + α21z + α22z

2 + · · ·
α10 + α11z + α12z2 + · · ·

=
α10

α00 + z
α20

α10 + z
(α20α11 − α10α21) + (α20α12 − α10α22)z + · · ·

α20 + α21z + α22z2 + · · ·

=
α10

α00 +
α20z

α10 +
α30z

α20 +
α40z

α30 + · · ·

(11.67)

The αij , i, j = 0, 1, 2, · · · may be thought of as the elements of an infinite
matrix and can be computed recursively by the formula

αrs = αr−1,0αr−2,s+1 − αr−2,0αr−1,s+1. (11.68)

Hence given the ratio of two power series (11.66) we can develop the continued
fraction (11.67) and by truncation we can obtain the approximations fp,p(z)
and fp,p+1(z).
We also mention here Padé-type approximants. If we define f(z) as above by
(11.61) and v(z), w(z) respectively by

v(z) = b0z
k + b1z

k−1 + · · ·+ bk,

w(z) = c0z
k−1 + c1z

k−2 + · · ·+ ck−1,

where

ci =
k−i−1∑

j=0

ajbi+j+1, i = 0, · · · , k − 1

then w(z)/v(z) is called the (k-1/k) Padé-type approximation to f(z) and sat-
isfies

w(z)
v(z)

− f(z) = O(zk), z → 0. (11.69)

More general results about Padé approximants, Padé-type approximants and
continued fractions (see next section) and the inter-relationship between them
can be found in the books by Baker and Graves-Morris [10], Brezinski [24] and
Sidi [216].
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11.5.1 Continued Fractions. Thiele’s method

An expression of the form

a1

b1+
a2

b2+
a3

b3 + · · · ,

is called a continued fraction.The above expression is shorthand notation for

a1

b1 +
a2

b2 +
a3

b3 + · · ·

.

The nth convergent, denoted by xn = pn/qn is given by

xn =
a1

b1+
a2

b2 + · · ·
an

bn
,

and can be computed by means of the recurrence formulae

p0 = 0, p1 = a1, pk = bkpk−1 + akpk−2 (k ≥ 2), (11.70)
q0 = 1, q1 = b1, qk = bkqk−1 + akqk−2 (k ≥ 2). (11.70a)

If
x = lim

n→∞
xn,

exists we write
x =

a1

b1+
a2

b2+
a3

b3 + · · · .

Thus, for example, we have

√
2 =

2
1+

1
2+

1
2+

1
2 + · · · .

If we have a continued fraction of the form
z

a1+
z

a2+
z

a3 + · · · ,

then it is evident that the successive convergents are rational functions of z
and in this section we will develop a method due to Thiele for determining a
continued fraction approximation to a function.
First we recall Newton’s divided difference interpolation formula

f(x) = f(x0) + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2] + · · ·
+ (x− x0)(x− x1) · · · (x− xn−1)f [x0, x1, · · · , xn] + Rn,

(11.71)

where
Rn = (x− x0)(x− x1) · · · (x− xn)f [x0, x1, · · · , xn, x].

If u0(x) = f(x) and

ur(x) = ur(xr) + (x− xr)ur+1(x),
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then

ur(xr) = f [x0, x1, · · · , xr],

the rth divided difference. Now let v0(x) = f(x) and define the sequence of
functions {vr(x)} by

vr(x) = vr(xr) +
x− xr

vr+1(x)
= br +

x− xr

vr+1(x)
. (11.72)

Then

f(x) = v0(x),

= v0(x0) +
x− x0

v1(x)
,

= b0 +
x− x0

b1 +
x− x1

v2(x)

,

= b0 +
x− x0

b1+
x− x1

b2 +
x− x2

v3(x)

,

= · · ·
= b0 +

x− x0

b1+
x− x1

b2+
· · · x− xn−1

bn+
x− xn

vn+1(x)
(11.73)

In general it is not easy to obtain vn+1(x) but we note that when x takes
the values x0, x1, · · · , xn the value of vn+1(x) is not required and we obtain a
terminating continued fraction which, at the points x0, x1, · · · , xn agrees with
f(x).
To find the br we have from (11.72)

vr+1(x) =
x− xr

vr(x)− vr(xr)
,

so that, defining φ0[x] = f(x), we generate a sequence of functions {φr} as
follows

v1(x) =
x− x0

v0(x)− v0(x0)
=

x− x0

f(x)− f(x0)
= φ1[x0, x],

v2(x) =
x− x1

φ1[x0, x]− φ1[x0, x1]
= φ2[x0, x1, x],

and, in general,

vr(x) =
x− xr−1

φr−1[x0, · · · , xr−2, x]− φr−1[x0, · · · , xr−1]
= φr[x0, · · · , xr−1, x].

(11.74)
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The functions φr , by analogy with divided differences, are called inverted dif-
ferences and we note that

br = φr[x0, · · · , xr], (11.75)

so that we can easily build up our continued fraction. Inverted differences,
unlike divided differences, are not symmetric functions of their argument. We
can obtain symmetry by defining

ρr[x0, · · · , xr] = φr[x0, · · · , xr] +φr−2[x0, · · · , xr−2] +φr−4[x0, · · · , xr−4] + · · · ,
(11.76)

which terminates with φ1[x0, x1] if r is odd and φ0[x0] = f(x0) if r is even.
ρr[x0, · · · , xr] is called a reciprocal difference and is a symmetric function of the
arguments.
In the Newton divided difference interpolation formula if all xi tend to x0 then
we obtain the Taylor expansion of f(x) about x0. A similar limiting process
applies to the continued fraction representation and as xi → x0 (all i), br → cr

(all r) so that

f(x) = b0 +
x− x0

b1+
x− x1

b2 + · · ·
x− xn−1

bn
,

→ c0 +
x− x0

c1+
x− x0

c2 + · · ·
x− x0

cn
. (11.77)

This expansion is called a Thiele expansion and we shall now explain how the
c’s are obtained. Since

br = φr[x0, · · · , xr] = ρr[x0, · · · , xr]− ρr−2[x0, · · · , xr−2],

we have, if we write

φr(x) = lim
xi→x

φr[x0, · · · , xr], i = 0, 1, · · · , r,

ρr(x) = lim
xi→x

ρr[x0, · · · , xr], i = 0, 1, · · · , r,

and rearrange
ρr(x) = ρr−2(x) + φr(x). (11.78)

Substitution of xi = x, i = 0, 1, · · · , r − 1 in (11.74) gives

φr[x, · · · , x, xr] =
xr − x

φr−1[x, · · · , x, xr)− φr−1[x, · · · , x, x)
,

=
xr − x

ρr−1[x, · · · , x, xr]− ρr−1[x, · · · , x, x]
,

and as xr → x we have

φ(x) = 1/
∂

∂x
ρr−1[x, · · · , x].

In particular,

φr(x) = r
/dρr−1(x)

dx
. (11.79)

(11.78) and (11.79) enable us to determine the quantities cr = φr(x0). The
functions φr(x) are called the inverse derivatives of the function f(x).
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11.6 The method of Steepest Descent

This method can be a valuable tool for determining an asymptotic expansion for
the inverse Laplace transform when t is large — this may of course not always
be possible as is the case when f(t) = cos t. Consider the integral

I =
∫

C
h(z)etg(z)dz,

where t is a large positive parameter, g(z) is an analytic function and C, the path
of integration is an arc or closed contour in the complex plane. This integral
will be unchanged if C is deformed provided that the path does not pass through
a singularity of the integrand. If we write z = x + iy, g(z) = u(x, y) + iv(x, y),
the integrand becomes

h(x + iy)eitvetu.

For constant v and large t the integrand does not oscillate rapidly and if u(x, y)
is large and positive the modulus of the integrand is also large for all v. At an
extremum of u

∂u

∂x
=

∂u

∂y
= 0,

and, by virtue of the Cauchy-Riemann equations,

∂v

∂x
=

∂v

∂y
= 0

at this extremum. Since we also have

∂2u

∂x2
= −∂2u

∂y2
and

∂2v

∂x2
= −∂2v

∂y2
,

it follows that if u is a maximum in the x direction it is a minimum in the y
direction and vice versa. Such an extreme point is called a saddle point because
the shape of the curve at the extremum is shaped like a horse’s saddle. If z0 is
the saddle point then, from the above, it follows that g′(z0) = 0 and in order to
obtain a path of steepest descent from z0 it is sufficient to select the contour by
requiring that the term involving g′′ in the expansion

g(z) = g(z0) + 1
2 (z − z0)2g′′(0) + · · · ,

be real and negative for z ∈ C and in the neighbourhood of z0. This gives

I ∼ etg(z0)

∫

C
h(z) exp[ 12 (z − z0)2g′′(z0)]dz,

or, substituting s2 = −t(z − z0)2g′′(z0), we have

I ∼ etg(z0)

[−tg′′(z0)]1/2

∫ ∞

−∞
h(z)e−

1
2 s2

ds. (11.80)

The main contribution to the integral is obtained by putting h(z) = h(z0) which
is equivalent to evaluating the integral in the neighbourhood of the saddle point.
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Example 11.6 Find the asymptotic expansion of f(t) for small t given that

f̄(s) = s−1/2e−2s1/2
.

By the inversion formula

f(t) = L−1{f̄(s)} =
1

2πi

∫ γ+i∞

γ−i∞
s−1/2ets−2s1/2

ds, <γ > 0.

Let s = σ/t2. Then

f(t) =
1

2πit
h(1/t),

where

h(λ) =
∫ γ+i∞

γ−i∞
σ−1/2 exp(λ[σ − 2σ1/2])dσ, <γ > 0.

We now analyze the asymptotic behaviour of the integral h(λ) as λ → ∞, i.e.,
as t → 0 + . We need to determine the saddle point which is the solution of

d

dσ
[σ − 2σ1/2] = 0,

that is σ = 1.
To evaluate the integral we set σ = ρeiθ noting that, because of the branch cut
on the negative real axis, θ ∈ (−π, π). It follows that the steepest descent and
ascent paths can be shown to be

√
ρ cos(θ/2) − 1 = 0 and θ = 0. Thus, if we

deform the path of integration to be the steepest descent path, we find that

h(λ) ∼ 2i
√

πλ−1/2e−λ as λ →∞.

Thus,

f(t) ∼ e−1/t

√
πt

as t → 0 + .

This agrees with the tabulated transform given in Appendix 11.1.

11.7 Gerschgorin’s theorems and the

Companion Matrix

If p(z) is a polynomial of degree n with leading term zn, that is,

p(z) = zn + a1z
n−1 + a2z

n−2 + · · ·+ an−1z + an,

then the roots of the equation p(z) = 0 are exactly the eigenvalues of the
companion matrix, C,

11.7. GERSCHGORIN’S THEOREMS



228 CHAPTER 11. APPENDIX

C =




−a1 −a2 −a3 · · · −an−1 −an

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
0 0 0 · · · 1 0




.

Gerschgorin’s theorems give information about the location of the eigenval-
ues of a general matrix A (see Wilkinson [254] ).

Theorem 11.1 If A = (aij) is a n×n matrix then every eigenvalue λ of A lies
in at least one of the circular discs with centres aii and radii

∑
j 6=i |aij |, that is,

in the union of the discs

|λ− aii| ≤
∑

j( 6=i)

|aij |, i = 1, · · · , n.

¥

Theorem 11.2 If s of the circular discs of Theorem 11.1 form a connected do-
main which is isolated from the other discs, then there are precisely s eigenvalues
of A within this connected domain. ¥

It follows from Theorem 11.1 that the eigenvalues of the companion matrix C
lie in the union of the discs

| − a1 − z| ≤ 1,

|z| ≤ |aj |+ 1,

|z| ≤ |an|,

and consequently that the roots of the polynomial equation p(z) = 0 satisfy

|z| ≤ max
j

(|aj |+ 1), j = 1, · · · , n.

With regard to the polynomial in Application 10.1 the companion matrix
has

a1 = −
(

1 +
µ + s

λ

)
, a2 = · · · = aN−1 = 0, aN = µ/λ,

and its eigenvalues lie in the union of the discs

|z| ≤ 1, |z| ≤ µ/λ,
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and ∣∣∣∣z + 1 +
µ + s

λ

∣∣∣∣ ≤ 1.

If µ ≤ λ then N of the discs are unit discs and the remaining disc is isolated
from the unit discs if |(µ+s)/λ| > 1, i.e., if s satisfies |s| > λ−µ ( which implies
<s > γ for some γ).
Another application of Gerschgorin’s theorems arises in Weeks’s method where,
in choosing the parameters of the method, we need bounds for the zeros of the
Laguerre polynomials. In Cohen [45] it is noted that the zeros of the Laguerre
polynomial Ln(x) are the eigenvalues of the symmetric tridiagonal matrix

A =




1 1
1 3 2

2 5 3
. . . . . . . . .

n− 2 2n− 3 n− 1
n− 1 2n− 1




. (11.81)

Application of Gerschgorin’s theorem shows that the largest root of the equation
Ln(x) = 0 satisfies

λ ≤ max(4n− 6, 3n− 2),

i.e.,
λ ≤ 4n− 6, n ≥ 4.
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[2] Abate, J. and Valkó, P.P. Multi-precision Laplace transform inversion,
Int. J. Num. Meth. Eng., 60 (2004) 979-993.

[3] Abate, J. and Whitt, W. Numerical inversion of Laplace transforms of
probability distributions, ORSA J. Comp., 7 (1995) 36-53.

[4] Abramowitz, M. On the practical evaluation of Integrals, SIAM J. Appl.
Math., 2 (1954) 20-35.

[5] Abramowitz, M. and Stegun, I.A.(eds.) Handbook of Mathematical Func-
tions with Formulas, Graphs and Mathematical Tables, Dover Publications
Inc., N.Y., (1965).

[6] Akin, J.E. and Counts, J. On rational approximations to the Inverse
Laplace Transform, SIAM J. Appl. Math., 17 (1969) 1035-1040.

[7] Akin, J.E. and Counts, J. The application of continued fractions to
wave propagation in a semi-infinite elastic cylindrical membrane, J. Appl.
Mech., 36 (1969) 420-424.

[8] Albrecht, P. and Honig, G. Numerische Inversion der Laplace-
Transformierten, Ang. Inf., 19 (1977) 336-345.

[9] Baker, G.A. Jr. Essentials of Padé Approximants, Academic Press, N.Y.,
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mials, Birkhäuser, Basel, (1980).

[25] Brezinski, C. and Redivo-Zaglia, M. Extrapolation methods: Theory and
Practice, Elsevier Science Publishers, Amsterdam, (1991).

[26] Brezinski, C. Computational Aspects of Linear Control, Kluwer, New
York, (2002).

[27] Brezinski, C., Redivo-Zaglia, M., Rodriguez, G. and Seatzu, S. Multi-
parameter regularization techniques for ill-conditioned linear systems, Nu-
mer. Math., 94 (2003) 203-228.

[28] Burnett, D.S. and Soroka, W.W. An Efficient Numerical Technique for
Evaluating Large Quantities of Highly Oscillatory Integrals, J. Inst.
Maths. Applics., 10 (1972) 325-332.

BIBLIOGRAPHY



233
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D.K., QUADPACK — A subroutine package for Automatic Integration,
Springer-Verlag, Berlin, (1983).

[186] Piessens, R. and Haegemans, A. Inversion of some irrational Laplace
Transforms, Computing, 11 (1973) 39-43.

[187] Piessens, R. and Huysmans, R. Algorithm 619, Automatic Numerical In-
version of the Laplace Transform, ACM Trans. Math. Soft. (TOMS), 10
(1984) 348-353.

[188] Pollard, H. Note on the inversion of the Laplace Integral, Duke Math. J.,
6 (1940) 420-424.

[189] Pollard, H. Real inversion formulas for Laplace Integrals, Duke Math. J.,
7 (1941) 445-452.

[190] Post, E.L. “Generalized differentiation”, Trans. Am. Math. Soc., 32 (1930)
723-781.

[191] Pye, W.C. and Atchison, T.A. An algorithm for the computation of the
higher order G-transformation, SIAM J. Numer. Anal., 10 (1973) 1-7.

[192] Razzaghi, M. and Razzaghi, M. Least Squares determination of the in-
version of Laplace Transforms via Taylor series, Electronics Letters, 24
(1988) 215-216.

[193] Razzaghi, M. and Razzaghi, M. Functional approximation for inversion of
Laplace Transforms via polynomial series, Int. J. Systems Sci., 20 (1989)
1131-1139.

[194] Reichel, L. www.math.kent.edu/ reichel/publications.html

[195] Rizzardi, M. A modification of Talbot’s method for the Simultaneous Ap-
proximation of several values of the Inverse Laplace Transform, ACM
Trans. Math. Soft. (TOMS), 21 (1995) 347-371.

[196] Rizzo, F.J. and Shippy, D.J. A method of solution for certain problems of
transient heat conduction, A. I. A. A. J., 8 (1970) 2004-2009.

[197] Roberts, G.E. and Kaufman, H. Table of Laplace Transforms, W.B. Saun-
ders Co., Philadelphia, (1966).

[198] Rogers, L.C.G. and Shi, Z. The value of an Asian Option, J. Appl. Prob.,
32 (1995) 1077-1088.

[199] Rudnick, P. Note on the calculation of Fourier Series, Math. Comp., 20
(1966) 429-430.

[200] Salzer, H.E. Tables of Coefficients for the Numerical calculation of Laplace
Transforms, National Bureau of Standards, Applied Math. Ser., Washing-
ton D.C., (1953)pp36.

BIBLIOGRAPHY



244

[201] Salzer, H.E. Orthogonal Polynomials arising in the numerical Inversion of
Laplace Transforms, M. T. A. C., 9 (1955) 164-177.

[202] Salzer, H.E. Equally weighted quadrature formulas for Inversion Integrals,
M. T. A. C., 11 (1957) 197-200.

[203] Salzer, H.E. Tables for the numerical calculation of Inverse Laplace Trans-
forms, J. Math. Phys., 37 (1958) 89-108.

[204] Salzer, H.E. Additional formulas and tables for for orthogonal polynomials
originating from Inversion Integrals, J. Math. Phys., 40 (1961) 72-86.

[205] Schapery, R.A. A note on approximate methods pertinent to thermo-
viscoelastic stress analysis, ASME, 2 (1962) 1075-1085.

[206] Schmittroth, L.A. Numerical inversion of Laplace Transforms., Comm.
ACM, 3 (1960) 171-173.

[207] Seydel, R. Tools for Computational Finance, Springer-Verlag, Berlin,
(2002).

[208] Shanks, D. Non-linear transformations of divergent and slowly convergent
sequences, J. Math. and Phys., 34 (1955) 1-42.

[209] Shirtliffe, C.J. and Stephenson, D.G. A computer oriented adaption of
Salzer’s method for inverting Laplace Transforms, J. Math. Phys., 40
(1961) 135-141.

[210] Shohat, J. Laguerre polynomials and the Laplace Transform, Duke Math.
J., 6 (1940) 615-626.

[211] Sidi, A. On the approximation of square-integrable functions by Exponen-
tial Series, J. Comp. Appl. Math., 1 (1975) 229-234.

[212] Sidi, A. Best rational function approximation to Laplace Transform Inver-
sion using a Window Function, J. Comp. Appl. Math., 2 (1976) 187-194.

[213] Sidi, A. An algorithm for a special case of a generalization of the Richard-
son extrapolation process, Numer. Math., 38 (1982) 299-307.

[214] Sidi, A. A user-friendly extrapolation method for oscillatory infinite inte-
grals, Math. Comp., 51 (1988) 249-266.

[215] Sidi, A. Acceleration of convergence of (generalized) Fourier series by the
d-transformation, Annals Numer. Math., 2 (1995) 381-406.

[216] Sidi, A. Practical Extrapolation Methods: Theory and Applications, Cam-
bridge University Press, Cambridge, (2003).

[217] Sidi, A. and Lubinsky, D.S. Convergence of approximate inversion of
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applications (see Graves-Morris, P.R.).

[263] Zakian, V. Properties of IMN and JMN approximants and applications to
numerical inversion of Laplace Transforms and initial value problems, J.
Math. Anal. and Appl., 50 (1975) 191-222.

[264] Zakian, V. and Coleman, R. Numerical inversion of rational Laplace
Transforms, Electronics Letters, 7 (1971) 777-778.

[265] Zakian, V. and Gannon, D.R. Least-squares optimisation of numerical
inversion of Laplace Transforms, Electronics Letters, 7 (1971) 70-71.

[266] Zakian, V. and Littlewood, R.K. Numerical inversion of Laplace Trans-
forms by weighted least-squares approximation, The Computer Journal,
16 (1973) 66-68.

BIBLIOGRAPHY



248

[267] Zakian, V. and Smith, G.K. Solution of distributed-parameter problems
using numerical inversion of Laplace Transforms, Electronics Letters, 6
(1970) 647-648.

BIBLIOGRAPHY



Index

ε-algorithm, 143, 215
ρ-algorithm, 220

Asian options, 191
asymptotic expansions, 42

Bateman, ix
bibliography

Piessens and Dang, 157
Piessens, 157

Brent’s minimization algorithm, 66
Bromwich, ix
Bromwich inversion theorem, 26

Carson, x
Cauchy

residue theorem, x
Cauchy integral representation, 61
Cauchy principal value, 99
Cauchy residue theorem, 29
Cauchy-Riemann equations, 226
Chebyshev polynomial, 50

first kind, 76
Chebyshev polynomials, 52
Cholesky decomposition, 155
Christoffel numbers, 73, 76
Clenshaw-Curtis quadrature, 210
companion matrix, 73, 227
Composition theorem, 10
continued fraction, 88, 223
convergence acceleration, 77
Convolution, 9
Convolution Theorem, 10
cosine integral, 76
Cramer’s rule, 215
Crump, 86
Crump’s method, 179

Dahlquist, 95
damping theorem, 4
Davies and Martin, 143
de Hoog et al, 87
delay differential equations, 14
delta function, 12, 145
difference equations, 14
Digamma function, 47
discrete Fourier transform (DFT), 95
discretization error, 63, 90
Doetsch, x
Dubner and Abate, 81
Duhamel’s theorem, 10
Durbin, 84

eigenfunctions, 149, 181
eigenvalues, 149, 181
epsilon algorithm

confluent, 77
Euler’s constant, 47
Euler-Maclaurin summation formula, 207
expansion theorem, 8
exponential integral, 36, 217
exponential shift theorem, 12
extrapolation methods, 77
extrapolation techniques, 212

Faltung theorem, 10
fast Fourier transform (FFT), 63, 81,

204
fast Hartley transform (FHT), 206
FFT

multigrid extension, 95
final value theorem, 40, 54
Fourier cosine transform, 43
Fourier series, 32, 75
Fourier sine transform, 43



250 INDEX

Fourier transform, 43
Fredholm equation

first kind, 147
second kind, 150

Fredholm integral equation, 148

G-transformation, 77
Gauss-Chebyshev quadrature formula,

209
Gauss-Kronrod integration, 210
Gauss-Laguerre quadrature formula, 209
Gauss-Legendre quadrature formula, 208
Gauss-type quadrature, 72
Gaussian quadrature rules, 208
Gaussian quadrature formula, 76
Gaussian type formulae, 71
Gaver, 143
Gaver method, 177, 180
generalised Laguerre polynomials, 69
geometrical parameters, 126
Gerschgorin’s theorem, 227
Goertzel-Reinsch algorithm, 132
Goldenberg’s method, 36
Grundy, 118

Hartley transforms, 91
Heaviside, viii

Unit Step Function, 11
Hilbert matrix, 49
Hilbert-Schmidt theory, 149
Honig and Hirdes, 90
Hurwitz and Zweifel, 75
Hutton averaging procedure, 77

initial value theorem, 40
interpolation, 71

by Chebyshev polynomials, 176
inverse discrete Fourier transform, 68
inverse Laplace transform, 8
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